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ABSTRACT. It is the purpose of this paper to give a survey of the relationship between
the class number one problem for real quadratic fields and prime-producing quadratic

polynomials; culminating in an overview of the recent solution to the class number one

problem for real quadratic fields of Richaud-Degert type. We conclude with new

conjectures, questions and directions.

KEY WORDS AND PHRASES. Class number one, real quadratic fields, Richaud-Degert
types, prime-valued quadratic polynomials, Gauss’ conjecture.
1980 AMS SUBJECT CLASSIFICATION CODES. 12A50, 12A25, 12A20, 12A95, 12A45.

1. INTRODUCTION
There has long been a certain fascination with prime valued polynomials. For

example in 1772 Euler [1] found that x=- x + 41 is prime for all integers x with

1 <_ x <_ 40. Later we will see that this is not so much a property of the polynomial as it

is of its discriminant -163. It happens that the more general polynomial
q(x) x=- x + (p + 1)/4 is prime for all integers x with 1 _< x < (p-3)/4 where all

integers x with 1 < x _< (p-3)/4 where p e {7,11,19,43,67,163}. The polynomial q(x)
is related to Gauss’ class number one problem for complex quadratic fields. Herein we are

concerned with describing this and other such relationships including recently discovered

prime quadratics related to real quadratic fields. Before we do this, we briefly outline the

meaning and history of the class group and class number. We shall understand a number

field to be a finite extension of the rational number field Q.
Kummer’s work on Fermat’s last theorem led him to the observation that the rings of

integers OK of certain number fields K (actually cyclotomic ones), did not have the

property of unique factorization of elements into a product of prime elements. Dedekind

restored, in a sense, unique factorization by introducing the notion of an ideal. In an

integral domain D with quotient field K, a fractional ideal is a D-submodule of
K for which there exists a non-zero a E D such that a.I c D. In what we now call
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a Dedekind domain every non-zero fractional ideal may be uniquely written as a product of

powers of distinct prime ideals. Hence the monoid, of non---zero fractional ideals of a

Dedekind domain is a group. The principal fractional ideals (i.e., those ideals with a single

generator) form a subgroup P of I. The quotient group I/P is called the ideal class

group of the Dedekind domain. It is a fact that rings of integers OK of number fields

K are Dedekind domains. We let CK denote the ideal class group of OK (or simply

of K). Dirichlet proved that CK is finite. We refer to its order hK as the class

number of K. Moreover we see that OK is a principal ideal domain (P.I.D.) if and

only if hK 1. It is a well-known fact that OK is a unique factorization domain

(U.F.D.) if and only if it is a P.I.D. Thus Kummer’s essential obstruction in his

investigation of Fermat’s last theorem were cyclotomic fields with class number bigger than

one. In fact Fermat’s last theorem is true for a prime p > 2 if p does not divide the

class number of the p-th cyclotomic field Q((p), (where (:p is a primitive p-th root

of unity). Class numbers bigger than one somehow measure how far away OK is from

being a U.F.D.
QUESTION: If hk > hL then does this mean that K is farther away (in some sense)
from being a UFD then L is? In his survey article [2] Masley cites well-known examples

of, Furtwangler to conclude in the negative and says: "The meaning of class numbers larger

than 2 is then a complete mystery". However the Furtwangler examples look at "activity’

in the Hibert Class field. In fact, in response to a problem stated by Narkiewicz in 1974

(to arithmetically characterize all algebraic number fields with class number bigger than 2),
David rush solved the problem in terms of elementary factorization properties in 1983. The

result is too technical to state here but a result of U. Krause for the cyclic case shows the

flavour of the approach as follows. (The term x primary should be understood to mean

xlyz implies xly or xlzn for some integer n _> 1).
THEOREM. CK is cyclic of prime power order if and only if there exists on

m _> 0 such that the mth power of every irreducible integer is a product of at most m

primary integers, hK is given by the smallest possible m.

Another result (attributable to Narkiewicz) which examines the hK > hL
phenomenon is as follows.

Let FK(X be the number of non-associated integers a of K with unique

factorization and INKIQ(a) _( x. Then we have hK > hL if and only if

FK(X)/FL(X 0.

In F. If AK(X log(FK(x)/log x) then lira (AK(x)/log log x) 1 (1/hg).
x-(R)

CONCLUSION. The answer to the Question depends upon what you mean by "farther

away from". The answer is clearly "yes" in terms of elementary factorization criteria such

as that of Kranss (above) or D. Rush; or in terms of "density" as with FK(X and

AK(X as above. The answer is not so clear if you look outside K in terms of the

principal ideal theorem of class field theory as Masley interpreted the Furtwangler examples.

2. COMPLEX QUADRATIC FIELDS AND PRIME QUADRATICS
Heilbronn and Linfoot [3] proved that there are at most ten complex quadratic fields

with class number one; namely Q(]- for d E {1,2,3,7,11,19,43,67,163, and possibly one
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other}. Baker [4] and Stark [5] independently eliminated the other potential d. For a

complete survey of the solution to the class number one problem see Goldfeld [6]. Also

included therein is the history of the solution to a more general problem going back to

Guass (i.e., to give an effective lower bound for discriminants of all complex quadratic fields

having a given class number). The 1987 Cole prize in number theory was jointly awarded

to D. Goldfeld, B. Gross and D. Zagier for their solution to this problem (see [7,
pp.232-234]).

Now we return to the prime quadratics introduced earlier. In 1913 Rabinovitch

obtained:

THEOREM 2.1. (Rabinovitch [8] and [9]). Let d 3 (mod 4), d > 0 and

K q(--. Then p(x) x- x + (d + 1)/4 is prime for all integers x with

1 _< x <_ (d-3)/4 if and only if hK 1.

Theorem 2.1 together with the aforementioned solution to Gauss’ class number one

problem for complex quadratic fields yields the remarkable property:

(P1) If d 3 (mod 4) is a positive integer then xa-x + (d + 1)/4 is prime for all

integers x with 1 <_ x <_ (d-3)/4 if and only if d e {’/’,11,19,43,67,163}.
As an illustration of (P1) for d 163 we get Euler’s celebrated polynomial:

EXAMPLE 2.1. x- x + 41 is prime for all integers x with 1 <_ x _< 40.

We now see the reason for the comment at the outset of the article that this is not

property of the quadratic but of its discriminant -163. For an interesting, (albeit older)
note on the subject see Lehmer [10]. We now turn to the relationship between class

number 2 for complex quadratic fields and certain prime quadratics. Baker [11] and

Stark [12] proved that there are exactly eighteen complex quadratic fields Q(-- K
with hK 2. They occur for d {5,6,10,13,15,22,35,37,51,58,91,115,123,187,235,267,
403,427}. Prime quadratics in relation to complex quadratic fields of class number 2

were discovered by Hendy [13]"

THEOREM 2.2. Let g Q(-’-.
(I) If d 2p where p is an odd prime then hK 2 if and only if

f(x) 2x + p is prime for all x with 0 _< x <
(II) If d p 1 (mod 4) i8 prime then hK 2 if and only if

f(x) 2x + 2x + (p + 1)/2 is prime for all integers x with 0 _< x < (/(p-1)/2.
(III) If d pq 3 (rood 4), and p < q primes then hK 2 if and only if

f(x) px: + px + (p+q)/4 is prime for all integers x with 0 <_ x < (/pq/12)-.
We note that from the genus theory of Gauss hK 2 for K Q(/’) if and

only if d is one of types I-III in Theorem 1.2. Hence Theorem 1.2 together with the

solution to the class number two problem for complex quadratic fields yields the next

remarkable relationship with prime quadratics.

(P2) If p is an odd prime then f(x) 2x + p is prime for all integers x with

0 _< x < / if and only if p E {3,5,11,29}.
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(P3) If p 1 (mod 4) is prime then f(x) 2x + 2x + (p + 1)/2 is prime for all

integers x with 0 <_ x < rI/2 if and only if p E {5,13,37}.

(P4) If p < q are primes with pq 3 (mod 4) then f(x) px + px + (p + q)/4

is prime for all integers x with 0 <_ x < (/pi/12)- 1/2 if and only if pq E

{15,35,51,91,115,123,187,235,267,403,427}.
As an illustration of the above we have:

EXAMPLE 2.2. 2x + 29 is prime for all integers x e with 0 _< x <_ 14.

EXAMPLE 2.3. 2x + 2x + 19 is prime for all integers x with 0 <_ x _< 3.

EXAMPLE 2.4. 7x + 7x + 17 is prime for all integers x with 0 5 x <_ 5.

There is only one other class of fields for which there is a complete answer to the

class number two problem. There are exactly two cyclotomic fields K Q(n (where
n $ 2 (mod 4)) such that hK 2. They occur for n 39 and 56, (see Masley [14]
for a survey of small class groups for abelian number fields.)

The solution of the class number one and two problems for complex quadratic fields

led to a neat set of solutions (P1)-(P4), for related prime quadratics. The story is not so

complete for real quadratic fields as we will see in the next section.

3. REAL QUADRATIC FIELDS AND PRIME QUADRATICS
The complete solution given in 2 does not yet have an analog for real quadratic

fields. This is true because, at this juncture in mathematical history very little is known

about class numbers of real quadratic fields. For example it is still not known whether

there exist finitely many real quadratic fields with a given class number. In particular an

open conjecture of Gauss says that there are infinitely many real quadratic fields with class

number one. As Goldfeld said in his response to the receipt of the Cole prize (op. cit.)-
"This problem appears quite intractable at the moment." In point of fact we do not yet

know whether there are infinitely many number fields with class number one. However with

respect to prime quadratics some progress has been made. We begin with the introduction

of a restricted class of real quadratic fields, which have been a topic of interest from

several perspectives for some time.

If d / + r where ! > 0 is an integer and r divides 4l with integer

r such that -! < r <_ l, then Q(rd) (or simply d) is said to be of Richaud-Degert

type (or (R-D)-type), (see [15] and [16]). If Irl e {1,4} then d is said to be of

narrow (R-D)-type. In the general case they are called (wide) (R-D)types. In [17], S.

Chowla conjectured that primes p of narrow (R-D)type / + 1 with l > 26 satisfied

h(p) > 1, where h(p) hK for K Q(q). Several attempts have been made at

solving this conjecture, and we now wish to link this investigation with our search for

prime quadratics.

A step toward a real analog of Rabinovitch’s Theorem is the following result of

Kutsuna [18]:
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THEOREM 3.1. If d 1 + 4m is square-free and -x + x + m is prime for

all integers x with 1 < x < . then h(d) 1.

Kutsuna’s result however, is incomplete in that it does not give necessary and

sufficient conditions for h(d) 1 in terms of prime quadratics. Moreover it fails for

some of the most interesting fields. For example it fails when m is a square thereby

eliminating Chowla’s conjecture. In an attempt to link the Chowla conjecture to a search

for a real analogue of Rabinovitch’s result Mollin [19] discovered the following pleasant

connection:

THEOREM 3.2. Let d 4m+ 1 be square-free where m is a positive

integer. Then the following are equivalent.

(I) h(d) I.

(II) p is inert in Q(d) for all primes p < m; (i.e. (d/p) -1 for all odd primes

p < m, where ] is the Legendre symbol; and m is odd).

(III) f(x)=-x + x + m 0 (mod p) for all positive integers x and primes p

satisfying x < p < m.

(IV) f(x) is prime for all integers x with 1 < x < m.

Note that it is known from more general results proved in Mollin [20] that if

d / + 1 > 17 is square-free and t# 2q for an odd prime q then h(d) > 1, (see

also [21]). The further reduction to 4q + 1 being a prime is known by the genus

theory of Gauss. In fact the reduction to t 2q, q > 2 prime is known (eg. see [17,
p.48]). In [19] however all such reductions are accomplished via elementary arithmetic

techniques. In any case the Chowla conjecture and the above yield the following

conjectures.

The overriding assumption in the conjectures is that p --4q + 1 is prime and

q > 2 is prime.

CONJECTURE 3.1. -x -t- x -I- q is prime for all integers x with 1 < x < q

if and only if q <_ 13.

CONJECTURE 3.2. (p/r) -1 for all primes r < q if and only if q <_ 13.

CONJECTURE 3.3. -x + x + q2 $ 0 (mod r) for all positive integers x and

primes r satisfying x < r < q if and only if q <_ 13.

Although the Chowla conjecture remains open for the above case, Mollin and Williams

[22] were able to prove it under the assumption of the generalized Riemann hypothesis

(GRH); i.e., the Riemann hypothesis for the zeta function of Q().
Further investigations by Mollin [23] revealed the following result. In what follows

(W + Vrd)/2 denotes the fundamental unit of Q(]d) and N((T + U/d)/2) where

N denotes the norm from Q(Fd) to Q. For convenience sake we let A (T--I)/U.
THEOREM 3.3. Let d 1 (rood 4) be a positive square-free integer such that

(/d-I)/2 <_ A. Then the following are equivalent.
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(1) h(d)- 1.

(2) p is inert in Q(qrd for all primes p < A.

(3) f(x) -x -b x -b (d-l)/4 0 (rood p) for all positive integers x and primes p

satisfying x

(4) f(x) is prime for all integers x with 1 < x < (fd-’/..
Theorem 3.2 is an immediate consequence of Theorem 3.3 as is the following result on

the other narrow R-D types.

COROLLARY 3.1. Let d m 4 > 5 be square-free. Then h(d) > 1 unless

d 4p + 1 where p is prime, in which case the following are equivalent:

(i) h(d)- 1.

(ii) q is inert in Q(/d for all primes q < f m if d m-b 4

m-. if d ms- 4.

(iii) f(x)--x / x / p 0 (rood q) for all positive integers x and primes q

satisfying q < x < ,,.
(iv) f(x) is prime for all integers x with 1

In [24] Yokoi conjectured thai; h(d) > 1 when d--q-b 4 is squarefree with

q > 17 prime. Under the assumption of the generalized Riemann hypothesis this

conjecture follows from the techniques used by Mollin and Williams in [22]. Thus we have:

CONJECTURE 3.4. If q is an odd prime then -x -b x / (q-b 3)/4 is prime

for all integers with 1 < x ( q2 + 3)/2 if and only if q <_ 17.

In [25] Mollin and Williams were able to make substantial progress and found all real

quadratic fields of narrow R-D type of class number one. To state the results we will

label some conditions at this uncture since we will have oecassion to refer to them often.
In what follows d is assumed to be a positive square-free integer, and

(:1)/2 if d --_ 1(mod 4)

4Cd ifd 1 (mod 4)

CONDITIONS.

/ x + (d-l)/4 if d m ICmod 4)
and fdCX)

-x / d if d ICmod 4)

(I) p is inert in Q(/ for a primes p < a.

(II) fd(x) O(mod p) for an intezers x and primes p such that 0 _( x < p < a.

(III) fd(x) is prime for integers x with 1 < x < a

(IV) h(d)-- 1.

THEOREM 3.4. (Mollin and Williams [25]) (I)= (II): (III):(IV). Moreover, if

d 1(rood 4) then (III) (II).
What is most surprising and revealing is their next result.
THEOREM 3.5. (Mollin and Williams [25]). If (III) holds for d >13 then

d 1(rood 4) and d is of narrow R-D type.
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In view of Theorem 3.5 we may now assert that Theorem 3.3 is es,entlally a

sta(,ment about narrow R-D types. Theorem 3.5 was also the key for Molla and

Wllams to find all real quadratic ficlds of narrow R-D type wth class number one.

2
3
5
6
7
11
13
17
21
29
37
53
77
101
173
197
293
437
677

prime values of fd(x) for < x< a

2,7
11

3
5
7
7,11
7,13,17
13,19,23
13,23,31,37,41
19,29,37,43,47
17,31,43,53,61,67,71
19,37,53,67,79,83.97,1(3,107
37,59,79,97,1 I3,127,139,149,157,163,167.

Table 3.1. h(d) 1

THEOREM 3.6. (Mollin and Williams [25]). If the G.R.H. holds then (III) (IV)
If and only if d is an entry on Table 2.1

COROLLARY 3.2. Assume the G.R. tl. holds. All real quadratic fields Q(.,/]) of

narrow R-D type with h(d) 1 are fr d {2,3,17,21,29,37,53,77,101,173,197,293,
437,677}. (Note that 5 is not generally considered to be an R-D type since it does not fit

the fundamentM ut pattern. Morver 6,7,ll e de R-D types and

13 3 + 4 t + r is not R-D type siuce must be less than t).
Thus (under GRH) Corollary 3.2 verifi conjectures of Chowla, Mollin and Yokoi (see

[51).
Ts left on the problem for wide R-D types. Mollin and Williams were able to

settle the question in [26]. Moreover they discovered some strong connections between the

class number one problem and prime producing quadratic polynomials. For example:

THEOREM 3.7. (Mollin-Wilams [26]). (a) t d 4 2 > 2. If

fd(x) =-2x+d/2 is prime or 1 for M1 integers x th 0 x < [2 then h(d)= 1.

(b) Let d (2l + 1) 2 with l > 0. If fd(x) -2x: +2x + (d-l)/2 is prime or

1 for integers x with 0 < x < (a + 1)/2 thcn h(d)= 1

Tables 3.2 and 3.3 illustrate Theorem 3.7(a) and (b) respectively.



8 R.A. IIOLI N

6
14
38
62
398

fd(x)- -2x:’ + d/2 for , < x < //2

3
7,5
19,17,1 t,l
31,9,2:,13
199, i97,19 I, lal,167,149,127, I01.71,37.

’Fable 3.2.

7
II
23
,l 7
83
167
227

f,() 2:, + td-l)/ r, < .,- < (A + 1)/:

3
5,1
II,7
23,19,11
41,37,29,17,1
83,79,7 !,59, 3,23
I13,109, lO] 89,73,53,2}.

Observe th:it in Tohle 3.2 tl, e t,.I) vaiue s d 398 which ymlds the so called
Karst polynomial -2x2 + 19.). lloretcdore in the literature, 1,tt.le or no explanation has
been gvcn for the high density of primes in tiffs and other prime-producing poly,omials
It is precisely this connection wit1, the ,’lass nu, bct one probletn which is the reason, (sc
[26] for fcrthcr d.tls).

It was not ,lntil later ork in [27] wllcc Mollin and W:lliams were able to prove
results similar to Theorem 3 7 for tl,,. renaining R-D t?pes. In [26] they made two

c,,mjectu,..s concc,ning these R-I) types, which they were able to prove in even

generality in [27]. For example, t,h,,’)- p,ov,:d the {ollowmg in [27].
TIIBOREM 3.8. Let d pq, p < q where p 3 _-- q (mod 4) are l;rimes and

d _= ,5 (rood 8) If pxpxl(t,-q)/41 is t)r, me or 1 for all it,cgcts x with

_< . < (fd/’l- 1/2 then h(d)-: :1.0

Despite the seemingly more general nature of Theorem 3.8, the authors are couvinced

that if the hypothesis of Theorem 3.8 holds !hen d s of R-D type. In [27] they showed
that under the assumption of a suitable l(icrnann hypothesis the coxjectue holds. For
similar related theorems and conjcctmes see [27].

In [26] Mollin and Williams wc[e able to ittvoke the generahzed Ricmann hypothesis

(GRH) fcr the zeta-function of (:t) to find all eal quadratic fields of Ricbaud Degert
type with h(d) 1. In [28] they were able to :,,n,)ve the C,RH and proved the following.

In what follows extended R--D fype I,,.’a,,s those forms d 12+ r with r

dividing 4l.

THEOREM 3.9. l/Vith possibly only on ,,ore value rernaint’g all real quadratic fields

of Extended R-D type Q(/]) with h(d) at-(: one of the ,12 values of d given in the
set {23567113147223293373:‘4753‘?i977831l416773972]3‘227237293
398,413,43 7,453,573,677,717,1077,1133,1253,1293,1757 }.
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With this virtual solution of the class number one problem for real quadratic fields of

ERD type Mollin and Williams have since gone on to determine (with possibly only one

more value remaining) al real quadratic fields of class number one and period k _< 24 where

f(l+d’)/2 if d -= 1(rood 4)
Also under investigation is the classk is the period of w

[-d if d $ l(mod 4)
number 2 problem for real quadratic fields. We now turn to the general class number one

problem for real quadratic fields.

4. THE GENERAL CLASS NUMBER ONE PROBLEM.
As noted in the introduction, the prospects for resolving the Gauss conjecture

concerning an infinitude of real quadratic fields of class number one seem remote at this

time.

However, Mollin and Williams in [26] we able to establish a result for non-R-D types:
THEOREM 4.1. If p 1 (rood 4) is prime and the period of the continued fraction

expansion of w (1+)/2 is 3 then w (a,b,bi2a-1), its continued fraction expansion,

with a (b+c(b2+l)+l)/2 and p 4+4bc+(b+c(b2+l)) for some integers a,b, and c.

Moreover if p 1 (rood 8) then h(p) 1 if and only if p 17. Finally, if p 5 (mod
8) then h(p) 1 if and only if all of the following are true:

(1) bc+l is prime

(2) fp(t) (p-1)/4-t-t is prime whenever $ 2-1(c-1) (mod bc+l) and $ -2-1(c+1)
(mod bc+l) where 0 _< _< (b+c(b+l)-l)/2 a-1

(3) fp(t)/(bc+l) is prime or 1 whenever 2-1(c-1) (mod bc+l) or =-2-1(c+1) (mod
bc+l).
Examples of non-R-D types to illustrate Theorem 4.1 are p 317, 461, 557 and 773.

Another result for special kinds of real quadratic fields obtained in [26] is"

THEOREM 4.2. Let d 49n-{-78n/31 where n > 0 is even and d is square-free
and let fd(x) d-x. Then h(d) 1 if and only if the following conditions hold:

(1) 10n+9 and 6n+5 are primes.

(2) fd(x) is a prime for all even x # 3n+2 or 5n+4 with 0 <_ x _< 7n+5.
(3) fd(x) 2 prime for all odd x # n+l with 0 <_ x <_ 7n+5.

As an illustration of Theorem 4.2 take d 383.

It is this experience gained by Mollin and Williams in [22], [25] and [26] which gave
rise to the more general results in [27] concerning the connection between the class number

one problem for real quadratic fields, and certain less restrictive (than those in [22], [25]
and [26]) prime producing quadratic polynomials.

We observe also that, in view of Theorem 3.4 and 3.5 we get immediately that if p

is inert in Q(/]) for all primes p < (/’d-:I)/2 then d is of narrow R-D type.
Therefore to explore the general case we must relax the restriction on the number of inert

primes. There is nevertheless a strong connection here as evidenced by [25, Lemma 2.1]
where it was shown that conditions (I) and (II) are equivalent where a is allowed to

be an arbitrary positive real number.
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We conclude with some questions.

(Q1) What is the general version of Theorem 4.1? (This would yield the Rabinowitch

analog for real quadratic fields.)?
(Q2) Does there exist a real quadratic field analog of the Hendy result for class number 2

and prime quadratics (as discussed in the preamble to Theorem 2.2)?
(Q3) How may we relax condition (I) of 3 so that there is a result of the type given by

Theorem 3.4 for the general case?
(Q4) What is the explanation of the surprising similarity (beyond obvious norm

considerations) between (P2) and Theorem 3.7(a), between (P3) and Theorem 3.7(b);
and between (P4) and Theorem 2.8?

It is hoped that his article generates interest in the topics discussed and that some

new headway might be made in an efffort to extend the known horizons.
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