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ABSTRACT. Let X be a metrizable compact convex subset of a locally convex space. Using Choquet’s Theorem, wc

determine the structure of the support point set of X when X has countably many extreme points. We also

characterize the support points of certain families of analytic functions.
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1. INTRODUCTION.

Let X be a subset of a locally convex space E A continuous linear functional J on X is said to be associated

with fE X if ReJ(f)=max{ReJ(g):g E X} and ReJ is non constant on X. In this case we call asuormrtpoint

of X The set of support points of X will be denoted by Supp X The set of extreme points of a convcx subset F of

E will be denoted by Ext F

Let D {z: [z[ < C} and equip the space A of functions analytic in D with the topology of uniform

convergence on compact subsets of D This topology is metrizable [1, p.1]. Every continuous linear functional on A

is induced by a sequence {bn}n__0 which satisfies lim sup ]bnl 1/n
oo o0

<1 and J(0 E anbn for f(z)= E anzn e
n=0 n=0

A [1, p.36]. Recently, the support points of many subclasses of A have been studied. For more details see [1] and [2].

Ill Section 2, we consider a metrizable compact convex set X in a locally convex space. Using Choquet’s theorem

we determine the structure of Supp X when Ext X is countable (Theorem 2.1).
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In Section 3, we consider the classes: P(p) {f(z) anzn e A ]an]
p <_ 1}, _< p < . In Theorem

n-1 n-I

3.4, we determine Supp P(p) Indeed, it is shown that Supp X is in 1-1 correspondence with a proper subset of

Supp Ball(p)

2. SUPPORT POINTS OF SETS WITH COUNTABLY MANY EXTREME POINTS.

Let E be a locally convex space, and suppose that X is a metrizable compact convex subset of E A theorem

by Choquct [3, p.19] says that if x E X then there exists a probability measure Px on X supported by Ext X such

that L(x) I L dpx for every L in E* In case Ext X is countable (possibly finite), we have the following:

Ext X
CIIOQUET’S THEOREM (Countable Case). Suppose Ext X {fn} is countable. Then X {’ Anfn: An _> 0

!i

for each n and An 1}.
n

PROOF. Let (/ X By Choquet’s Theorem, there exists a probability measure pf on X supported by {fn}

such that L(f) I L dpf. Thus L(f) [ #f(fn) L(fn) Hence L(f- npf(fn)fn) O.
n

{fn}

Since’this is true for every L in E*, we get f Pf(fn) fn as required.
n

We proceed to the main result of this section.

THEOREM 2.1. Let X be a metrizable compact convex subset of a locally compact space E such that

Ext X {fn is countable. For each positive integer n, set Kn equal to the closed convex hull of {fi: n}. Then

(1) Supp X is contained in the union of those Kn which are proper subsets of X.

(2) Kn C_ Supp X if and only if fn closed affine hull of (fi:i :/: n}.

PROOF. To prove (1), let f Supp X. By Choquet’s Theorem, we can write . Air with each A > 0

and . A Let b be a continuous linear functional associated with f. Then Re b(f) . A Re t(fi)

< A Re (f) Re b(f) Hence we must have Re b(fi) Re (f) whenever A > 0. On the other hand, since

Re is non-constant on X, we must have Re b(fi) Re b(t’) for some i. We conclude that A 0 for some i, as

required.

To prove (2), suppose that fn does not belong to the closed affine hull H of {fi: :/: n} and fix g ( Ku Then

H g is a closed real subspace of E not continuing fn g A version of the Hahn-Banach theorem [4, page 59] gives a

functional J in E* whose real part vanishes on H-g while b(fn -g)=-1. Set b(fn+l)= b. Then

b(fn) =b- while b(fi) b(fn+l) =b for every n. Thus, b(g) =b for all g (/ Kn For any h in X.by

Choquet’s Theorem, we have h . f/i fi with fi -> 0 and . i 1. Thus b(h) /n(b-1) + /i b
in

=b-/n

_
b. This shows that g SuppX.

Conversely, assume that Kn C_ Supp X For ease of notation we take n and assume Ext X {fn}n= is

infinite. By. assumption, fi is a support point of X. Let be an associated linear functional in E* and
i=2

set S {g E E: Re b(g)= Re b(f)} Note that S is a closed affine subspace of E. Since Re b(f)=

2il--_1 Re b(fi) < 2 Re b(f) Re b(O, we have Re b(fi)= Re b(f) for alia >2. Thus the closed affine hull
i=2 i=
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of {fi’i = 1} C_ S. On the other hand, in view of Choquet’s Theorem, if fl E S then Re would l,c constant o,, X.

Thus fl S and consequently, fl closed affine hull of {fi: = 1}

EXAMPLES. (1) Let X be a triangle in R2 with vertices fl’ f2 and f3" Tl,,,sc vertices are the extreme

points of X and the affine hull of any two of them is a line, not containing the third. The theorem guarantees that

3
Supp X J Kn which is indeed the boundary of X

n=l

Let X be a square in R2 with vertices fl’ f2’ f3 and f4 The affine hull of any three of the fi’s is all of(2)

R2 In particular, each fi / am,le hull of -{f:: :/: i}. The theoren guarantees that no Kn is contained in S,,pp X.

fact, Supp X the boundary of X has no interior.

(3) Let T be the fmnily of all functions which are analytic and univalent in D and take the for,u f(z)
x> zn zlz- an ,an >0. By[5],Ext. T={fn}=l where fl(z)=z and fn(z)=z- for n>l. For ,>l,itis
rim2

clear that fn does not belong to the closed affine hull of the remaining {fi} so Kn C_ Supp X by the second part
n=2

of the Theorem. Since fl is a limit point of the remaining fi’s K X and Supp X [.J Kn by the first part of
n=2

the Theorem.

COROLLARY 2.2. Let X be as in Theorem 2.1. Then Supp X U -6 (Ea) where each Ea is a subset of

Ext X.

PROOF. Suppose (/ Supp X and is an associated linear functional with f. Writing . Aifi, we see

that Re(f)=Re(fi) whenever A :/:0. Take Ea={fi]A :/:0}. Then ffi(Ea) C_ SuppX.

The theorem says these Ea are proper subsets of Ext X i.e., they cannot be "too big". The next proposition

implies that they can’t all be singletons, i.e., "too small"

PROPOSITION 2.3. Let X be a compact convex subset of a locally convex space. If X ha.s more tl,an two

extreme points, then Supp X is uncountable.

PROOF. Without loss of generality we may assume that 0 X Let fl and f2 be two independent clenents

of X, and let 1 and 2 be continuous and linear functionals such that l(fl) 2(f2) and l(f2) d.2(fl) 0.

Define : X R2 by ,(f) (bl(f), 2(f)). Then (X) is a compact convex subset of R2 with non empty interior.

Since (X) has uncountably many boundary points, Supp((X)) is uncountable. Since -1 takes support points to

support points, we see that Supp X is uncountable too.

2ri c
EXAMPLE. Take fn e-’n’- for n 1, 2 and X -6 {fn} in R2 Then Supp X U co {fn,fn+l}

n:l

llere all the Ea’s have cardinality two even though Ext X is infinite.

COROLLARY 2.4. Let X be as in Theorem 2.1. Then Ext X Supp X if and only if X has two extreme

points.
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3. SUPPORT POINTS OF CERTAIN CLASSES OF ANALYTIC FUNCTIONS.

For _< p < Co define P(p) {E anzn A: E lanl
p -< 1] It is easy to see that the clscs P(p) are

n=l n=l
compact convex subsets of A These classes are closely related to Ball(gp) and we will find that Supp P(p) is in one-

to-onc correspondence with a proper subset of Supp Ball(p) As a corollary, we determine the support l)oints of ccrtain

fanilies of univalent functions. We use the notation a for the sequence {an}x)=l
Ve begin with a simple observation.

PROPOSITION 3.1. Let X be the unit ball of a Bausch space E. Then Supp X {x X llxll l}. If

is a.sociated with x, then (x) I111

PROOF. That every vector of norm one belongs to Supp X is a consequence of the tlahn-Banach theorem.

Suppose conversely that the real part of X* achieves its maximum over X at x Since X is closed under

multiplication by scalars of absolute value at most one, we have Re (x) sup Re (y) I111 Thus I111 Re (x)

_< IIll Ilxll and so IIxll- 1. Moreover (x)- I111 implies Re (x)_> I(x)l, so (x)is in fact real

EXAMPLE. The family P(p) "looks like" the unit ball of p but we cannot immediately apply Proposition 3.1

support points. For example, the sequence n}n= l}n=l belongs to the unit sphere of 2to filld its bu

CO

] anzn is not a support point of P(2). The problem is that any non-constant linear functional (bn)-I 2 which
I1

its maximum at {an}nco=l must be a scalar multiple of {an}n=l. So lim sup nbn which does nota.sulne

correspond to a continuous linear functional on A.

We find the support points of P(p) by making the remarks in the preceeding example more precise.

PROPOSITION 3.2. Suppose T E F is a linear, injective, and continuous map between topological vector

spaces E and F and let X be a subset of E Then Tx Supp TX if and only if x Supp X and some linear

functional associated with x belongs to range T*

PROOF. Recall that T* F* E* is defined by T* oT. Suppose Tx SuppTX and choose F*

with Re(Tx)=max Re(Ty). Set b= ,oT; then range T* Re b(x) max Re(y),andinjectivityof T
yX yX

implies that Re is not constant on X

Conversely, let range T* such that Re b(x) max Re (y) Write T F* Then

Re (Tx) max (y), and Re cannot be constant on TX since Re b is not constant on X.
yTX

PROPOSITION 3.3. Let a X-Ball(p),(1 <p<oo),with Ilallp= 1,and b gq. Then:

(1) If b is associated with a, then there exists f 0 with /lbnlq -lanl
p

for all n.

an lanl
p-1

if an :/:0
(2) If bn= { otherwise

then b is associated with a.
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(I)-I)(I
It,is r(.stil ft)llovs

froJ llol<h,r’s l.q,ta.lit>..

’Fh( following is the tlai, res,.sl/, of finis sc(:tio}.

TIIEOI,IGNI 3.,I. I.,.l. f(z)
cx;

a.zn be i P(l)) "I’h.,, is a support l)oitt ot7 1)(i)) if
i1=

(1) is a],alyLi(: i, 13 a.,ad E la, P , fo < p < ,.
N n=l N

where N is some positive int.eger and la,l h)r !)(e) f(z) a,,,
t--- n

t’.ooF, t-),t, ’r-e t) A by T(a)= an zn Clearly T ,al)s Ball(ep)onto
n=

M,,,.eo,’(,," tr ,,.,,y < a.d , ep, (1 < p < ), we h,.v, sup rt’(a)(z)l I,,,I,
IzlSr n=l -’’1

ll61(lcr’s i,cqualil.y, ’F is (;oatinuots. Similarly for p

is tl,, seq,,ent:e t.,,,},,__: (;o,,sidered a.s ,-,,ember of (tp)" t(l Thus {I.,,,} 1,=1 6_ (/1).)* is i,} the

(1) Suppose !’- .!’ (ii Supp P(p). By Propositio, 3.2, a, 65 Sttpl) Ba.il (/p). ’l’h,ts by I.’r,.)l)(,sitio :.1. wc gt,

if2 :’,l
p

If the t’,,tctiona.l socited with Ta, is given by {bn},,l then lim S,l, ,lb,,I < lly Prop,)sitio,

:.3, t.t,,re exists 0 s,,,:.h i.l,at lanlo fllbnl
q rot all n. Thus lin sup "Jla.,,nl < a,,d i ,.,,a.lyti(: i,,

(:or, vers(dy, spl.,os,:r l.hat, T(a) is analytic in I3 with lanlP I. ’l’h( S,Pt)lla.ll (/LI))I.)y
n=l

l’ropoxit.io 3.1, an(! or(, (t.r choose th,. hrctional associated with a as in the formul::t of l"rol;osilio,t 3.:. Si(,(, lh(

radi,.Is or (:o,,vergen,:( of tl,,:, i,ower series ot" i; g/’t,t/.er than o,,e, lira sup , I.- < so lit,,

I) E ra.nge ’[" Thus Sttpp 1’(i)) 1)y I’rol.),:),-_’itio, 3.2.

(2) S,,ppos,,

I,y Propositions 3.2
=1

Ilbll

finitely many n as rtquir,d.

N N
(7o,,versely, s,,ppose Ta= f(z)= anZn a,,d I,,! t. Then e S,pp I:-.II.

11=1 11::]

Define bn

0 ot he.rvise
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COltOLI,ARY 3.5. A function f(z) + al,
n is a support point of Q(p) if and only if

(1) is aualytic in D and hlanl
p

if < p < ,,
N

(2) f(z) + anzn and I.1 , for om I,ositive integer N 2, if p
n=2 n=2

PROOF. One way to see this, is to replace {p by ep(H) where it(n) n n 2,3 in the proof of

Theorem 3.4.

R.EMARK. One can define P(o) {f(z) anzn suplanl < One can show. usi,,s a,, arg,,n,c,,t si,,,ilar

!i--"
,:X:3

to tl,e proof of Theorem 3.4, that. Supp P(oo) {f(z) : anzn lanl for some n > 1}.
n=l
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