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ABSTRACT. Let X be a metrizable compact convex subset of a locally convex space. Using Choquet’s Theorem, we
determine the structure of the support point set of X when X has countably many extreme points. We also

characterize the support points of certain families of analytic functions.
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1. INTRODUCTION.

Let X be a subset of a locally convex space E. A continuous linear functional J on X is said to be associated
with f € X if Re J(f) = max{Re J(g): g € X} and Re J is non constant on X. In this case we call { a support point
of X . The set of support points of X will be denoted by Supp X . The set of extreme points of a convex subset F of
E will be denoted by Ext F .

Let D = {z:|z] <1,z € C} and equip the space A of functions analytic in D with the topology of uniform
convergence on compact subsets of D . This topology is metrizable [1, p.1]. Every continuous linear functional J on A
is induced by a sequence {bn}:io which satisfies lim sup |bn|1/n <1 and J(f) = § apby for f(z) = %0 apz" €
A [1, p.36]. Recently, the support points of many subclasses of A have been studied.nf_‘or more details see [lri—amd [2).

In Section 2, we consider a metrizable compact convex set X in a locally convex space. Using Choquet’s theorem

we determine the structure of Supp X when Ext X is countable (Theorem 2.1).
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In Section 3, we consider the classes: P(p) = {f(z) = 2 apz" € A 21 Ian|p <1},1 < p<o. InTheorem
n=

3.4, we determine Supp P(p) . Indeed, it is shown that Supp X is in 1-1 correspondence with a proper subsct of
Supp Ball(€p) .
2. SUPPORT POINTS OF SETS WITH COUNTABLY MANY EXTREME POINTS.

Let E be a locally convex space, and suppose that X is a metrizable compact convex subset of E . A theorem
by Choquet [3, p.19] says that if x € X then there exists a probability measure py on X, supported by Ext X, such

that L(x) = I L dux forevery L in E*. Incase Ext X is countable (possibly finite), we have the following:
Ext X
CHOQUET’S THEOREM (Countable Case). Suppose Ext X = {f;} is countable. Then X = {3} Anfy: Ay 20
n

forecach n and Y Ap =1} .
n
PROOF. Let f € X. By Choquet’s Theorem, there exists a probability measure pp on X, supported by {fy,},

such that L(f) = [ Ldpe . Thus L(f) = 3 pe(fn) L(fn) . Hence L(f- 3 pp(fn)fn) = 0.

[ n

{fn}
Since ‘this is true for every L in E*, weget f= ) pe(fn) fn , as required.
n

We proceed to the main result of this section.

THEOREM 2.1. Let X be a metrizable compact convex subset of a locally compact space E such that
Ext X = {fy} is countable. For each positive integer n , set K; equal to the closed convex hull of {fi: i # n}. Then

(1) Supp X is contained in the union of those Kj which are proper subsets of X .

(2) Kp C Supp X if and only if f;; ¢ closed affine hull of {fi: i#n}.

PROOF. To prove (1), let f € Supp X . By Choquet’s Theorem, we can write f = E AL with each A, > 0

and E Ay = 1. Let ¢ be a continuous linear functional associated with f . Then Re 4(f) = 2 A Re #(f;)
<X ;i Re ¢(f) = Re ¢(f) . Hence we must have Re ¢(f;) = Re ¢(f) whenever X, > 0. On the other hand, since
Re 415 is non-constant on X , we must have Re ¢(f;) # Re ¢(f) for some i. We conclude that A, =0 for some i, as
required.
To prove (2), suppose that f;, does not belong to the closed affine hull H of {fi: i #n} andfix g € Ky, . Then
H - g is a closed real subspace of E not continuing f;, - g . A version of the Hahn-Banach theorem [4, page 59) gives a
functional J in E* whose real part ¢ vanishes on H - g while ¢(f, - g) = -1 . Set #(f,,;) =b . Then
é(fn) =b-1 while ¢(f) = ¢(f +1) b for every i # n. Thus, ¢(g) =b forall g € K. Forany h in X. by
Choquet’s Theorem, we have h = 2 B; fi with B; 20 and E ﬁi = 1. Thus ¢(h) = Bnp(b-1) +‘E ﬂib
=b- By <b. This shows that g € ;upp X. l i
Conversely, assume that K, C Supp X . For ease of notation we take n = 1 and assume Ext X = {f,}° n=] I8
infinite. By-assumption, f =‘§2 éllTl fi is a support point of X . Let ¢ be an associated linear functional in E* and
set S = {g € E: Re ¢($l)_= Re #(f)} . Note that S is a closed affine subspace of E . Since Re ¢(f) =

ﬁ Re ¢(f;) < 2 51 Re #(f) = Re ¢(f) , we have Re 4(f;) = Re ¢(f) for all i > 2. Thus the closed affine hull

,Tgms
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of {f:i# 1} €'S. On the other hand, in view of Choquet’s Theorem, if f; € S then Re ¢ would be constant on X .

Thus fl & S and consequently, fl ¢ closed affine hull of {[i: i#1}.

EXAMPLES. (1) Let X be a triangle in R% with vertices fj» fy and f3 . These vertices are the extreme
points of X and the affine hull of any two of them is a line, not containing the third. The theorem guarantees that

3
Supp X = J K, , which is indeed the boundary of X .
n=1

(2) Let X be asquare in R2 with vertices fiy fy, fy and fy - The affine hull of any three of the fi‘s is all of
R2. In particular, cach f, € affine hull of {fj:j # i} . The theorem guarantees that no K, is contained in Supp X .

In fact, Supp X = the boundary of X has no interior.

(3) Let T be the family of all functions which are analytic and univalent in D , and take the form f{(z) =
0
2-Y apz" ,ap > 0. By [5], Ext T = {f3}§1 , where fj(z) =2 and fy(z) =z- 111 2" for n>1. For n>1,itis

n=2

00
clear that f, does not belong to the closed affine hull of the remaining {I'i} ,s0 J Kj C Supp X by the second part
n=2

&

00
of the Theorem. Since f; is a limit point of the remaining fi’s , Ky=X and Supp X = U K, by the first part of
n=2

the Theorem.

COROLLARY 2.2. Let X be as in Theorem 2.1. Then Supp X = |J @ (Eq) , where cach Eq is a subset of
a
Ext X .
PROOF. Supposc f € Supp X and ¢ is an associated linear functional with . Writing { =3 ’\iri' we see
i

that Re ¢(f) = Re ¢(f;) whenever A #0. Take Eq = {1 # 0} . Then f € @ (Eq) C Supp X .

The theorem says these E, are proper subsets of Ext X , i.e., they cannot be “too big”. The next proposition

implics that they can’t all be singletons, i.e., “too small” .

PROPOSITION 2.3. Let X be a compact convex subset of a locally convex space. If X has more than two
extreme points, then Supp X is uncountable.

PROOF. Without loss of generality we may assume that 0 € X . Let f; and fy be two indcpendent cleinents
of X,andlet ¢; and ¢5 be continuous and linear functionals such that #1(f)) = é9(fy) = 1 and ¢,(fy) = ¢,(f}) = 0.
Define : X » R2 by ¢(f) = (¢1(f); ¢5()) . Then $(X) is a compact convex subset of R2 with non empty interior.
Since ¥(X) has uncountably many boundary points, Supp(¥(X)) is uncountable. Since ¢'"1 takes support points to
support points, we see that Supp X is uncountable too.

2xi

2m 00
EXAMPLE. Take f =e™ for n=1,2,..and X = {fy} in RZ. Then Supp X = co (‘"'fnu} .
1

n=
Iere all the E,’s have cardinality two even though Ext X is infinite.

COROLLARY 2.4. Let X be as in Theorem 2.1. Then Ext X = Supp X if and only if X has two extreme

points.
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3. SUPPORT POINTS OF CERTAIN CLASSES OF ANALYTIC FUNCTIONS.

o) o)

For 1 < p < o, define P(p) = {3 apz" € A: } Ianlp < 1} . It is casy to sce that the classes P(p) are
n=1 n=

compact convex subsets of A . These classes are closely related to Ball(¢p) and we will find that Supp P(p) is in onc-

to-onc correspondence with a proper subset of Supp Ball(¢p) . As a corollary, we determine the support points of certain

families of univalent functions. We use the notation a for the sequence {an}g.;l .

We begin with a simple observation.

PROPOSITION 3.1. Let X be the unit ball of a Banach space E. Then Supp X = {x € X: ||x]|=1}. If ¢
is associated with x, then ¢(x) = ||¢]|| .

PROOF. That every vector of norm one belongs to Supp X is a consequence of the Hahn-Banach theorem.

Suppose conversely that the real part of ¢ € X* achieves its maximum over X at x . Since X is closed under
multiplication by scalars of absolute value at most one, we have Re ¢(x) = supx Re ¢(y) = ||¢ll . Thus ||¢]] = Re ¢(x)
ye

< |I¢ll lIx|]| and so ||x|| = 1. Moreover Re ¢(x) = ||¢|| implies Re ¢(x) > |$(x)| , so #(x) is in fact real.

EXAMPLE. The family P(p) “looks like” the unit ball of €p , but we cannot immediately apply Proposition 3.1
to find its support points. For example, the sequence {an}?:l = {@ %}gil belongs to the unit sphere of ¢, , but

0
S apz" is not a support point of P(2) . The problem is that any non-constant linear functional {b“}ﬁi
n=1

1 € &° which
assumes its maximum at {an}g‘;l must be a scalar multiple of {an}g?_:l . So lim sup n,jlbnl = 1, which does not

correspond to a continuous linear functional on A .

We find the support points of P(p) by making the remarks in the preceeding example more precise.

PROPOSITION 3.2. Suppose T : E — F is a linear, injective, and continuous map between topological vector
spaces E and F, and let¢ X be a subset of E. Then Tx € Supp TX if and only if x € Supp X and some linear
functional associated with x belongs to range T* .

PROOF. Recall that T* : F* — E* is defined by T*% = ¢ o T . Suppose Tx € Supp TX and choose ¥ € F*
with Re 9(Tx) = ;neas(( Rey(Ty) . Set ¢ = ¢ o T ; then ¢ € range T*, Re ¢(x) = ;’nea)x( Red(y) , and injectivity of T
implies that Re ¢ is not constant on X .

Conversely, let ¢ € range T* such that Re ¢(x) = ;,né'xs(( Re ¢(y) . Write ¢ = 9 oT, ¢ € F*. Then

Re ¥(Tx) = rg%xx ¥(y) , and Re ¥ cannot be constant on TX since Re ¢ is not constant on X .
y
PROPOSITION 3.3. Let a € X = Ball(¢p), (1 < p < 00) . with ||a||p =1,and b € {q. Then:

(1) If b is associated with a , then there exists 8 # 0 with ﬁlbn|q = lan|p for all n.

Y lanP~! if an # 0
(2) If by = { n
0

otherwise

then b is associated with a .
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PROOF. (1) From Propoesition 3.1, we learn that b(a) = |[bllq = |Ibllgllajlp - ‘Thus we have Holder equality. so

. . q .
there exists  # 0 with 3 |b,,|' = |a“|p for all n.

N ) . p--1 P . X (
(2) bia) = Yapnby = Flan| lay] = Ylap| =1, while []bllg =} |ay]

n=1

-1 .
p-la = 1, so this result follows
from Holder’s inequality.

The following is the inain result of this section.

o
TUEOREM 3.4, Let f(z) = Y apz™ bein P(p) . Then { is asupport point of P(p) if and only if

N o ngol p
(1) I isanalyticin D and Y Jay|" =1,for 1 <p< .
N n=1 N
(2) f(z) =Y. ays", where N is some positive integer and Y lay| =1 for p=1.
n=| n=1
o)
PROOE. Define “I': £, — A by T(a) = ) apz" . Clearly T 1aps Ball({p) onto P(p) and T is injective.
n=1
o 1/
Moteover for any t < 1 and a € {p, (L < p < »), we have sup [T(a)(z)] < 3 Japht™ < [lall} (—l—q) M by
z|<r n=1 1-r
Holder’s incquality, so I is continuous. Similarly for p=1.
20 o o i -
It 6 € A™ is given by (3 apz) = 3 aghy . then (T"¢)(a) = ¢(Ta) = 3 anby, lor every a € £ . So 170
n=1 n= n=|

is the sequence {b“]‘;i:l considered as a member of ()" = & . Thus {I)n};ﬂl € (€p)* is in the range of ™ if and
only if lim sup nJHr—,,T <1.

(1) Suppose f = Ta ¢ Supp P(p) . By Proposition 3.2, a € Supp Ball (€p). 'Thus by Proposition 3.1, we get
i i:x,,[p = 1. If the functional associated with Ta is given by {bp}

n=

3.3, there exists § # 0 such that |::1n|p = /3|bn|q for all n. Thus lim sup n\ﬂ:i:m] < 1 and so f is analyticin D .

o0 1 N 2 9 a1t
n=1° then lim sup 11J|_l),,| < 1. By Proposition

_ 0
Conversely, suppose that f == T(a) is analytic in D with |an|p = 1. Then a € Supp Ball () by

n=1
Proposition 3.1, and one can choose the functional associated with a as in the formula of Proposition 3.3. Since the

radius of convergence of the power series of { is greater than one, lim sup nlayl <1 so lim sup n Ill—)“| < I and thus

x

b € range I . Thus f & Supp P(p) by Proposition 3.2.
(2) Suppose f=Ta € Supp P(1) and b is a functional associated with a . Then lajly = I and b(a) = [|bllx

x )
by Propositions 3.2 and 3.1. Thus equality mnst hold at all poinis of the chain h(a) < Y Jaylby] < 3 Jay| bl

>
n= n=
< ||blloo - In particular |by| =2 ||bll~. whenever ap # 0. Since lim sup n||by] < 1, this weans ap = 0 for all but

finitely many n , as required.

N N
Conversely, suppose Ta = f(z) = }° anzy and 3> |ay! =~ 1. Then a € Supp Ball (¢;) .
1

n= n=:1
a . ,
hi' if a, # 0,
Define by = n
0 otherwise .

Lhen fim sup o »‘“hn] <1 and {h,,}ﬁi] € U0L)" i associated with a . By Propesition 5.2, [ is a suppoert point of
PeL) | as required.

o~

Let Q(p) = {f(z) =2 + . ayz € A: 3 slagl” < 1), 1 <p<oo. Theclass Q(I) has beeu studied in [t].

We remark that cach element of (1) is univalent.
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o
COROLLARY 3.5. A function f(z) =z + 3. a,2" is a support point of Q(p) if and only if
n=2

_ 0

(1) [ is analyticin D and Y nlanlp =1,if I<p<x

N n=g

(2) f(z) =24 Y apz" and Y [ay| = L. for some positive integer N > 2,if p=1.
n=2 n=2

PROOF. One way to sce this, is to replace €y by €p(p) . where p(n) =n, n = 23.. in the proof of

Theorem 3.4.

o)
REMARK. One can define P(co) = {f(z) = Y. apz" : suplap| < 1} . One can show, using an argument. similar
n=1
20
to the proof of Theoremn 3.4, that Supp P(c0) = {f(z) = 3. apz" : ag| = 1 for some n > 1} .
n=1
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