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ABSTRACT. We show that there exists a natural extention of the sum of divisors function to

all unique factorization domains F having a finite number of units such that if a perfect number

in F is defined to be an integer r/ whose proper divisors sum to % then the analogue of Euclid’s

theorem giving the sufficient condition that an integer be an even perfect number holds in F, and

an analogue of the Euclid-Euler theorem giving the necessary and sufficient condition that an

even integer be perfect holds in those domains having more than two units, i. e., in Q(/:]) and
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1. INTRODUCTION.
The usual criterion that a concept has been appropriately defined in an algebraic extension

K of the rational number field Q is that the concept’s most important characteristics and

properties in Q have their counterpart in K. By this standard, the sum of divisors function has

never been satisfactorily extended to an algebraic number field. The function is, of course, easily

defined; however, the literature contains no attempts to define the concept in any algebraic
number field other than Q(/-), and this is almost certainly due to the difficulties experienced in

proving the analogues in Q(/:]) of the best-known theorems involving the sum of divisors

function. The sum of divisors function, in this respect, stands apart from the other familiar

number-theoretic functions. The Euler phi-function and the number of divisors function, for

example, are readily extended to a unique factorization domain having a finite number of units,

for they are simply counting functions, and, the Moebius function was defined in Q(/:]-) at the

turn of the century (in 1901 by Gegenbaner [1] (see Dickson [2], vol. 1, p. 447)). The analogue
of each of the best-known results involving these functions, including, of course, the generalized
Fermat theorem and the Moebius inversion formula have been shown to hold in those fields in

which these functions have been defined.

The most widely-known theorem involving the sum of divisors function, apart, possibly,

from the theorem establishing the multiplicative nature of the function, is the Euclid-Euler

theorem characterizing the even perfect numbers in Q:
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THEOREM E-E. A rational integer n is an even perfect number iff there exist rational

primes p and 2p- such that n 2P-1(2p- 1).

It is the analogue of this theorem which reason would suggest must be provable if an

extension of the sum of divisors concept to an algebraic number field is to be accepted as valid

and appropriate. Indeed, nearly all researchers who have examined this problem and have

obtained publishable results have considered the existence of perfect numbers in the field.

That the analogue of Theorem E-E has not been proven in an algebraic extension of Q

(this is not quite true--see our comments below) is related to two problems which arise.

TiLe first of these is that each of the concepts "positive", "sum of divisors", "Mersenne
number", "perfect number", and "even" must have a counterpart in the algebraic extension of Q
which is reasonable and "natural" in some sense. A moment’s reflection reveals that there may

be several reasonable ways to define each of these concepts, so that many combinations of the

definitions are possible. This problem was discussed by Spira [3] whose definitions in Q((i-) of

"s,um of divisors" and "Mersenne number" we have used in constructing our definitions in this

paper. Spira proved an analogue of Euclid’s theorem stating the well-known sufficient condition

that an even integer be a perfect number; using Spira’s definitions, the author of this paper

subsequently proved [4] an analogue of Euler’s converse, subject to the restriction that the

perfect numbers considered are primitive, i. e., not divisible by any other perfect number. (All
perfect numbers in Q are, of course, primitive.) While these results come close to meeting the

criteria that the concepts have been appropriately defined in an algebraic extension of Q, they

appear to fail in one important respect. As W. D. Geyer [5] has properly mentioned in his

review of Hausmann and Shapiro’s article [6], "Spira has generalized the notion of a perfect
number to elements of Z[i] in a certain artificial way...". A perfect number had been defined as

one whose divisor sum equals the product of the prime of least norm and the number itself.

However, there is implicit in Spira’s definition a relationship which makes his definition of

perfect number much less artificial than might appear. We will discuss this point more fully in

section 5.

The second problem encountered by the researchers who have examined the question of

whether an analogue of Theorem E-E can be proved in Q(4I-), and which is, in fact,
encountered in any unique factorization domain K having a finite number of units, is that Euler’s

proof ([7], p. 88, or see [8]) that all perfect numbers are of the form 2P-1(2p- 1) for primes p

and 2p- 1, and the variation of Euler’s proof (apparently due to Dickson [9]) which appears in

most introductory number theory texts, do not generalize to K. This is related to the fact that

the sum of the divisors of a rational integer exceeds any partial sum of its divisors, whereas in

K, the sum a of the divisors of an integer may be "closer" to zero than a partial sum of its

divisors. (This is under the assumption that a is a mapping from K into K.) As an example,

using Spira’s definition of a in Q(i-) (see our Definition 2), Ia((1+2i)2)[ 3J-7, whereas

a((l+2i)2) 11
In this paper, we overcome each of these difficulties to show that there exists a very

nice---and very natural--extension of the sum of divisors function and the other concepts

mentioned above to all unique factorization domains having a finite number of units which yields

the analogue of Euclid’s theorem stating the sufficient condition that an integer be a perfect
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units (i. ,.. in QIv/z-) and Q(qr5)). Resoluli(>r ot ll,e I.,t polletl llu’liolc(l alxwe iiiwflvcs

cxanining tte roasolablc alternatives to our definitions al ,ghowit:g float they Callllol lead o ,
analogle of Theorctn E-E. The second problql is

llitrinovic 1o obai an inequality which reduces, in

well-known inequality a(pt)/p >_ (p + l)/p, for p lrinie, often ’1 in lesearch on odd pcrfecl

mlbcrs; this inequality is then used in obtaining l,lo th,siret

2. TIlE DEFINITIONS.

l.et F be a lniqe fa(’t()ization domain (UFD) wlici h,ls al ()sl a l’il,ilo number of

units. This requirenent implies lat F is Q, or Q(4]-) for !)=-1,--2,--’l.--7.-11,-19,---43,

--67, o -163. If F Q, and n a + I)t is in F, the (.oj.tc ,-- I)/[ is (lcn()te(1 1)y <*,

and the norm II(rll of i.,, the rti()md integer aa*. if F Q. tie ct)uju,-.:l(’ ofa ( 1." is t itself,
9

and Ilgl a’.

We shall state all ihe definiti,)s and our mai results in this ,wti)n (1 (li.,,(liss tlese

definitions in the next secti)n in ()tr first definitio, we sel(,(:t a sui).(,t ()f l]c il%[qs i F

containing exactly one associate of each iteger in F.

DEFINITION 1. I,et v lw the ttnl)er of ufits in F. If F Q, (lelx)tes lw set of

positive integers. If F Q, P denotes t,le set of inlegcrs

The set consisting of he conjugates of the eletcnts of P is denoted by P*.

Let r/ 0 be any integer in t", a.)(l be the mi(lue unit in I" st(’l) theft for l)rines
k

rl, r in P, r/= Hr

DEFINITION 2. ’[he sum a of divisors ()f ! is defined multiplicativcly by

(ki+l)
r

a(/) II
7r.

DEFINITION 3. With t.ho oxcel)tion of lr 1/.
k.

II(1 + r + + r 1) are said to be tle proper (livios of !

tle I(’Is of tle prodtl(’t

DEFINITION 4.

equals l-

The integer r/ is a l>,lfe(’l ttnl)er if the sln of the proper divisors of 0

It i ot necessary to define even, integer in F (see Seclion 7 for additional connents on

this point,)" instead, it suffices to partition the perfc<’l ml)ers ito two classes. Let r be a

prime in such that r- is a unit. We note hal 1,’ complains a nique 1)rim(’ in P of the form

"1 + a unit" except when F Q((), i which case b()th ’ and 3 +
o are of this tbrm.

k,

DEFINITION 5. The perfect nut)er q (llr r, I’, is said to be a,n E-pcl’ecl

nunber in F if r r for somei. If r r for ay i. /is said to l>e an O-pelfoct uunl>er.
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DEFINITION 6. The integer a(rk-l) (rk- 1)/(r- 1) Mk is called an F-Mersenne

number; if Mk is prime in F, Mk is called an F-Mersenne prime.

DEFINITION 7. The perfect number r/ is said to be primitive if there exists no perfect
number a r/such that a r/. A perfect number which is not primitive is said to be imprimitive.

The main results of this paper are the following analogues of the Euclid and Euler

theorems characterizing the even perfect numbers.

M
P

THEOREM 1. (Analogue of Euclid’s theorem).

P*, r/= rP-IM is a perfect number.
P

Let M
P

be an F-Mersenne prime. If

THEOREM 2. (Analogue of Thin. E-E). Let F be Q, Q(/I), or Q(-), and / be an

integer in F. The integer r/ rk-1/ is a primitive E-perfect number if and only if k is a

rational prime, and # is an F-Mersenne prime in P*. If F is Q or Q(vt-), there exist no other
E--,perfect numbers, i. e., all E-perfect numbers are primitive.

3. DISCUSSION OF THE CONCEPTS DEFINED IN SECTION 2.

The reader will note that if F is Q, Definitions through 6 are the familiar definitions of
the corresponding concepts in Q provided E-perfect and O-perfect are read as even perfect and

odd perfect, in Definition 5 (except that in addition to defining a in the usual way if r/ is a

positive rational integer, we have, also, defined a for r/ negative in Definition 2). Theorem is

Euclid’s theorem in Q, and Theorem 2 is Theorem E-E. While these definitions are, for the
most part, quite natural, alternate definitions are possible, and some have been employed with

partial success in previous investigations. The rationale for our choices goes beyond the desire to
extend the concepts in a natural way, however, and we shall see that alternate reasonable choices
for the definitions do not lead to fully satisfactory analogues of Theorem E-E.

The Set P. In Q(fT) (whose units are 1, i), P has been defined to be the first quadrant of
the complex plane including the positive half of the real axis and excluding the imaginary axis,

in Q(4-) (whose units are :1,2 and-1 +2..v.3), p is the first sextant of the complexand

plane including the positive half of the real axis and excluding the axis y qrx; all remaining
fields have only the units and-1, and in these fields P is the upper half-plane including the
positive but not the negative real axis.

It will be seen in Section 6 that an analogue of Euler’s converse of Euclid’s theorem

requires that the primes r in P satisfy the condition that I]a(rk)/l] > 1. It is well-known

that this inequality holds in Q, and Mitrinovic ([10], p. 140) proved that it holds for c any
complex number such that Re a >_ 1; it, in fact, fails to hold for infinitely many powers of each

complex number a such that Re a c < 1. Our definition of P assures that in Q(qr-) and

Q(q-) this inequality holds for r E P; If F Q, Q(q-), or Q(.,f:), no choice for P such that

r P : Ila(rk)/rk[I > is possible, since, in each of these fields, there exist integers both of

whose associates have their real part < (suggesting the reason for the failure of the Euler

converse for these fields). Definition was motivated, also, by the fact that in Q(q-), P
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contains two primes r such that r- is a unit--the validity of the analogue of Theorem E-E

for each of the primes r demonstrates the essential nature of the conccl)t "even", as we have

extended it.

An alternate choice for P which has been made in at least one investigation of perfect

numbers in Q(fz]-) (Randall, [11]) involved choosing P so that the positive real axis is an axis of

symmetry for P. With P so defined, however, it is not possible to prove the analogue of

Theorem E-E in either Q/z]- or Q(/z): In order to show that r/ is a perfect number of the

form r/= (a,k-1/?, for a unit and and ( and / prime in P, one can show that a nmst be

+ -1 and = ak- 1. However, in Q, + -1 is a prime in P only if -1 i, implying

2k/2(cos rthat = k + snk)- 1; but, then, fie P only if k 0 (rood 8), and fl prime

implies that, in addition, k is a rational prime, which is clearly not ssible. Similarly, in Q,

+ -1 is a prime in P only if -1 or (1 + )/2, and in the latter case, we have

3k/2(= - cos k + sin k)- which implies, above, that k 0 (rood 12), so

that, again, fl is not prime; it follows that if r (3 + )/2, Q() has no E-perfect

num@rs of the familiar form specified in Theorem 2. ndall showed, for this choice of P, that

if a rfect humor in Q() is defin by a(y) 2, then all perft numbers in Q() have

at let three prime factors and 5 is the only perft number < 106.

The Sum of Divisors Function. Previous investigations of problems involving the sum of divisors

function in Q(I-) have used the concept as defined in Definition 2 [3], [4], [11] (although not all

have required that the prime factors of y be in the set P as we have defined it), or, have defined

a to be the sum of the norms of the divisors of r/[12]. In related work, Hausmann and

Shapiro [6] investigated perfect ideals over the Gaussian integers, defining the sum of divisors of

an ideal to be the sum of the norms of the ideal’s divisors; in this paper, the authors found only

two perfect ideals and showed that there are no others having fewer than five distinct prime

factors.

Perfect Number. Definition 4 is, of course, the classical definition of a perfect number. In view
k.

of Definition 3, r/= (IIr is perfect if a(r/) r//e r/, that is, if a(r/) (1 +e-1)r/. We note

that if r/6 Q, -1 is 1, and, clearly, this relation corresponds to the familiar condition that

o() 2.

Even Perfect Number. Our decision to classify the perfect numbers as E-perfect numbers or

O-perfect numbers as opposed to defining an integer r/in F as even iff r r] is related to the fact
that the laws of parity do not necessarily hold in F under this definition. They do hold if

F Q(f3-); however, it is not difficult to construct examples to show that if F Q(/) and

r (3 + /:5)/2, the sum of two odd integers may be odd. There is, on the other hand, no

requirement that the partitioning of perfect numbers into two classes satisfies the laws of

parity--the sum of two even perfect numbers in Q, for example, is not an even perfect number.

(i)
(ii)
(iii)
(iv)

The concept of "evenness" in F may be defined by any one of the following:

n is even if

n is even if n is divisible by the prime factor of 2 of least norm;

n is even if n is divisible by the prime in F of least norm;

n is even if n is divisible by a prime of the form 1 + u where u is a unit.
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While these definitions ate equivalent in Q, it is toa,lily seen tiat lwy ae ot equivalent

in, for exanple, Q(/i) and Q(/s?). We have not ’ho.(,n Io extond the co)<’(’l)t ()f "erectness"
by sing any of the first three definitions because, in each (’a.c, the analoguo
fails in one or more fields F (it fails in Q(/-) for (i), atd in Q(/s) fo (ii) ,)nd (iii), tot

instan(’c). The concept even integer in an algebraw numb() field vill be

Section 7.

F-Mersenne Number. The definition is identical to t))e definition of Morse,me numb(’t in Q.
in Q, Mk is a prime in F only if k is a rational prime

4. TIIE PROOF OF TIIEOREM 1 AND A LOWEIt BOUNI) FOR Ila(rt)/.tll.
Theorem i readily established.

As

PROOF OF TIIEOREM 1. By definition, M
I)

rp-1Mp implies that

a(rp-l) (rp--- 1)/(7-- 1).

a(r/) a(rp-1)a(Mp) Mpa(Mi)i.

Now, if 7--1 1, M 2p- is in P: if r-1 1, r- (if
P

r-1 (1 + f)/2 (if 1 Q(V-J)) In either case, since, by hypotlaesis, Mp
associate ofMpin P is Mp(r-l) rp-1. ttence,

a(r/) Ml,a(Mp) Mpa(rp- 1) Mprp Q.E.D.

In order to prove Theorem 2, we first obtain an inequality wlich reduces to the

well--known lower bound often used iu research on odd perfect numbers:

a(pt)/p >_ (p + 1)/p,

where equality holds iff 1.

Mitrinovic ([10], p. 140) publisl,’d a proof that if z is an arbitrary eonl)lex numbe with

Re z >_ 1, then [l(zt+l- 1)/(z- 1)11 is bounded below by [Iztll. We now itprove upon this

lower Ix)und for Re z >_ 5/4.

TIIEOREM 3. Let z x + iy reio, withx_> 5/4. Ift is apositiveitt.eger,

Ill + z + + ztll > Ilzt-lll.(llzll + 2x- 1),

and. moreovor, if Yl -< x- 1,

II1 / z / / ztll >_ Ilzt-lll.(llzll / 2x / 1),

with equality holding iff 1.

PROOF. If 1, Ill + zll- (1 + x)2 + y2 llzll + 2x + 1.
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If 2,

1]1 + z + z2il []zii.ilz-1 + + zl[

lizll.[llzll + 2x + + (2x2 + 2x + 1-2y2)/iizl]]
[Izll.([[z[[ + 2x 1) for a y,f

> / [[z]] (]]z[] + 2x + 1)for [y] _< x.

If t_> 3,

IIx + z + + ztll Ilztll.[r2 + r-2t- 2rl-tcos(t + 1)0]/(r2- 2x + 1)

> ]]ztl].(r2 2r-2)/(r2 2x + 11.

Supposing that (r2- 2r-2)/(r2- 2x + 1) is less than (r2+ 2x- 1)/r2, and then less than

(r2 + 2x + 1)Jr2 when lYl < x 1, leads to the desired contradictions.

COROLLARY. If r is a prime in Q(J:ff) and x + yf: is the associate in P of r,

a()/rt > (I] rll + 2x 1)/]] rll;
tfy_<x-1,

][a(rt)/rt[[ _> (I]r]] + 2x + 1)/liar[[

with equality holding iff 1.

PROOF. Since [[r[[ I[x + Yqt:$[I and [[a(rt)[I [[1 + + (x + yq-)t[I, the corollary
is merely a restatement of the theorem for z r a prime in Q(J), provided we show that

x >_ 5/4.
Because x + y4- is an integer in Q(f:), x + y4- (a + b/:3-)/2, where a and b are

rational integers of the same parity. Since this integer is in P, b < a, and it is therefore

immediate that x= a]2isnot 112 nor 1. So, x_> 3]2 > 5]4.

If z p, a rational prime, the second inequality of Theorem 3 (or of the Corollary)
becomes the bound a(pt)/pt _> (p + 1)/p.

5. E-PERFECT NUMBERS IN Q/:]-.

We have stated, in the Introduction, that while Spira defined an integer r/ in Q(J:]-) to

be a perfect number if a(r/)= rott, where vo is the prime in e of least norm (that is,

vo 1 + i), this definition, in fact, implies a more fundamental relationship. We shall show

that in this section, and prove Theorem 2 for F Q(i).

Our Definitions 1, 2 and 6 (for F Q(Jx]’)) are those used by Spira in defining P, "sum

of divisors" and "Mersenne number" in Q(q]), and Spira defined the integer r/ to be even if

(1 + i)l r/. Incorporating Spira’s proof of the sufficiency in a theorem characterizing the even

perfect numbers in Q(]), under the above definitions, the author proved [4]

THEOREM A. r/ is a.n even primitive perfect number iff there exists a rational prime

p (mod 8) and a Mersenne prime Mp such that r/= (1 + i)P-lMp.
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We shall show that Theorem A, under Spira’s definitions of even integer and perfect number, is

equivalent to our analogue of Theorem E-E, i. e., to Theorem 2 with F Q(4":-]-).

Our definition of P and r in

equal to rP-IM Since
P

Q(-i-) imply that r + ro, so, iu Theorem A, 11 is

[2P/2(cos r 7rMp (rp- 1)/(r- 1) p + sin p)- 1]/i,

it is readily seen that the condition that p (mod 8) is equivalent to Mp e P*. Finally,

under Spira’s definitions, rl erP-ll, for a unit and/t the product of prime factors in P, is an

even perfect number iff a(r/) (1 + i)r/, and, by the observation in Section 3 concerning our

Definition 4, r/is E-perfect iff a(r/) (1 +e-1)r/. It is now clear that Theorem A and Theorem

2 with F Q(:]-) are equivalent if =-i. But this is indeed the’case, for, upon observing
that the associate in P of Mp is Mp iMp, we see that the perfect number r/ (1 / i)P-lMp,

(M’pin Theorem A, can be written r/---irP-lMp P)" therefore r/ is of the form

r/= erP-1/z, with =-i.

E-PERFECT NUMBERS IN Q(/-).

In this section, we shall complete the proof of Theorem 2.

The Form of E-Perfect Numbers in Q(I).
Nk -IIMKII.

In the proof of the following lemma, we let

LEMMA 1. If, for (r,#) and k > 1, rk-1/ is a perfect number in Q(4-), then

the Q(/zff)-Mersenne number Mk a(rk-l) is prime.

PROOF. Assume rk-l is a perfect number in Q(-ff). Let r x + y/L- be any

prime factor in P of Mk. Since (r,Mk) 1,

ry a(r/)= a(rk-1)a(/)= Uka(/ (6.1)

implies that rlr/, and hence, /; we let a be the largest rational integer such that ra[p. Since,

by the Corollary to Theorem 1, Ila(at)/atl[ > for any prime power at, we have, upon using

the multiplicative property of a,

[[a(r/)/rr/[[ >_ [[a(rk-1)a(ra)/rkral[ > Nk([[r[[ + 2x- 1)/llrkll.llr[I

In the proof of the Corollary to Theorem 3, we observed, for r x + y4J, that x >_ 3/2. Since

the only prime in P having its real part equal to 3/2 is r, x _> 2; hence, applying the Corollary

to Theorem 3 to the above inequality,

Ilrll > Nk(2X- )/(llrllk- Nk) >- 3Nk/(llrllk- Nk)-
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S,,l)iS}se 3Nk/(i[r]l k Nk) <. Nkl/?. Now, if r

Mk [3k/2(cos gk + sin k) 1]/(r- 1), iuiplyin

Nk (rk l)[(rk) * 1] 3k 2 3k/2 rcos 6k + 1. ((;.2)

Substituting and simplifying, we find that, fi)r each value of r, the remlting inequality doos ot

hold for k > 1. Since Mk is a factor of rt, it follows that II,tl > Nk ]]Mk]] /2; hen(’c, f()r

some unit , r Mk, implying that Mk is prilne.

TtlEOREM 4. If ! is an E-perfect number in Q(--), then tltere exists a

Q(/s?)-Mersenne prime, M in P* such that for ome l)()sitive ral.ional integer >_ and integer
P

such that (r,/i) 1, r/= rI)-IM tb.
P

I’ROOF. Since Mk is a factor of r/, Lemma iml)lies that an E-pefc(’t ntmber in

Q(/z-) has the form specified in the thoorem, except that it ires not 1)ten shown tltat I P*
1)

r= (3 + -d)/2 (when r 2, Mk 2k-- P P*). Assume that r= (3 + vJ)/2when

and that l rP-l# is a perfect ntlml)er itt Q(f). Then,

implies

Using (6.2), we have

IlrP,ll I1,11 I1()11 llMpll’llo(t,)ll

IIMpll- IIPil.(llt, ll/ll(t,)ll) < !1#11- aP.

3p 2.3P/2.cos 6rl) + < 3p.

It is clear that (6.4) holds only if cos p is positive. That is, only if p 0, ,1, or *2 (rood 12).
Since p is a rational prime, p is not congruent to 0 or i2, modulo 12, unless p 2. If p 2,

however, Mp r + + -, aud

Ila(u)/r,ll >_ II’(r)tr(M2t)/r2" M2tll
> Ila(r)a(M2)ll/9-llM2ll Ila(M2)ll/9- 13/9.

Thus, p tl (rood 12). Suppose p -1 (rood 12). q’hen

Mp (3(p+l)/2 2 3P/2i)/2(r- 1),

and the a.ssociate in P of M is
P
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a [3(p+1)/2 + (3p/2 31/2)i]/2.
It follows, using the Corollary to Theorem 3, that

II o(,) / "11 II o( rp-1 )a(Mpt) a(i) / rPMp 11

(3p + I)/3p > I.

Hence, r/ E-perfect implies that p (mod 12);

Mp (3(p+l)/2 2 +3P/2i)/2(r- 1), Mp is in P*.

since p (rood 12) implies that

The Non-Existence of lmprimitive E-Perfect Numbers in Q(4-). Imprimitive perfect numbers

do not exist in Q, but imprimitive perfect numbers may exist in Q(4"si-) (see [4]). The

possibility of the existence of an imprimitive perfect number in an algebraic number field is

related to the fact that if r is a prime in the field, f(t) a(rt)/r may not be an increasing

function of (as it is in Q). For example, in Q(-J), if r + 2fs-,
Ila(r2)/r211 189/169 < 16/13 Ila(r)/rll. It is thus conceivable that if, for example,

rP-lMp is a perfect number, then Ila(rP-lMpt)[rPMptll < for some t, and there exists

i such that ]]a(rP-lMpt3)]rPMpt]] 1. Indeed, this is precisely the situation inan integer

Q(I-). We shall show, however, that this does not happen in Q(4J), i. e., that imprimitive

E-perfect numbers do not exist in Q(/s3-).

LEMMA2. Let Mp be a Q(q-Mersenne prime

Ila(Mp)/Mpll < Ila(Mpt)/Mpt[[ holds for all rational integers )_ 2.

in P*. The inequality

PROOF. If r 2, the lemma is clearly true. Assume r (3 + 4)/2.
reiO denote the associate in P of Mp. Now,lemma is false, and let Mp

Suppose the

2_ 111 > liMpt+l lll/llMpt-ll]la(Mp)/Mpll _> ]la(Mpt)/Mp liMp

which implies that

r4 2r2.cos 20 + >_ (r2t+2 2rt+l.cos(t+l)0 + 1)Jr2t-2.
That is,

Since, for Mp E P*,

(M;)2

rt-3 2rt-l.cos 20 _> r-t-1 2.cos(t+l)O.

[(3(p+l)/2 2 + 3P/2i)/212 r2(cos 20 + sin 20),

(6.5)

cos 20 (3P/2 3(p+l)/2 + 1)/r2.
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Substututing in (6.5),

rt-3(3P 2.3(p+l)/2 / 1) _< 2.cos(t+l)/?- r-t-1.

The left member of this inequality is _> 10rt-3 for p >_ 3; since the right member is negative for

2 and is less than 2 for _> 3, we have a contradiction.

THEOREM 5. There exist no imprimitive E-perfect numbers in Q(q-).

PROOF. Let r/be an E-perfect number.

Now, using Lemma 2,

t, with M E P*.By Theorem 4, r/= rP-lMp P

Ila()/ll Ila(rp-1)/rPll" Ila(Mpt)/M;ll I1o(0/11

>- II(rP-1)/rPll’lla(Mp)/Mpll-
However, by Theorem 1,

Ila(rP-1)/rPll lla(Mp)/Mpll 1.

Now r/= erk-lMp, implies that

the integer rp-1Mp is a perfect number, so

Strict equality, then, must hold, so and 5 is a unit, e.

a(/) a(7-P-1)a(Mp) Mpa(rp 1) Mp7-p rr//e,

from which we conclude that 1, proving the theorem.

It is clear that Theorem 2 is now essentially proved.

Section 4 and the necessity is a consequence of Theorems 4 and 5.

The sufficiency was shown in

7. CONCLUDING REMARKS.

We have indicated, in Section 3, that the concept "even integer" was not defined in F in

part because the laws of parity fail to hold in Q(.,/:). That is, if one defines r/ to be an even

integer iff r It/, where r / u (u a unit in P), then the sum of two odd integers may be odd

in Q(/sJ). (Another reason is that for r (3 + /:-g)/2, in Q(/z-J), 2 is an odd integer!)

Other additive problems in algebraic number theory have involved defining an integer r/of
the field as even if every prime ideal of the first degree which divides the rational prime 2 also

divides r/. (In a UFD, this corresponds to (ii) in our listing of alternate definitions of even, in

Section 3.) Most notable of these problems are, perhaps, the analogue of the Goldbach

conjecture and certain problems involving representations of integers as sums of powers of primes;

we refer the interested reader to [13], p. 446+ for a summary of the results on these and related

problems.

The analogue of Theorem is provable, except in F Q(.,/:), under this definition of

even integer. (That is, if we define 7-= + for F Q(v]-), 7- for F Q(-./:2), and

7- 2 for all other fields F, and define r/to be even iff 7-1 r/.) However, under the definitions of

this paper, Q(.-) was shown to have no E-perfect numbers (since there exists no prime
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r + a unit in Q(-42)), and under these alternate definitions, Theorem is siml)ly not true

for F- Q(.,/). This exception points tip, again, the observation that the proof ia Q of

Theorem E-E relies, in an essential way, upon the fact that an even integer has the property

that it is divisible not by the "least" prime, but rather, by a prime of the form + u, where u

is a unit.

Because many of the results concerning the form or existence of odd perfect numbers in Q
are based on the inequality which we have extended to F in Theorem 3, it is anticipated that

the analogues of these theorems can be obtained in Q(vi-) and Q(.,-) using the concepts of this

paper.
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