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ABSTRACT. We show that there exists a natural extention of the sum of divisors function to
all unique factorization domains F having a finite number of units such that if a perfect number
in F is defined to be an integer 7 whose proper divisors sum to 7, then the analogue of Euclid's
theorem giving the sufficient condition that an integer be an even perfect number holds in F, and
an analogue of the Euclid—Euler theorem giving the necessary and sufficient condition that an
even integer be perfect holds in those domains having more than two units, i. e., in Q(y=I) and

Q(V-3).
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1. INTRODUCTION.

The usual criterion that a concept has been appropriately defined in an algebraic extension
K of the rational number field Q is that the concept's most important characteristics and
properties in Q have their counterpart in K. By this standard, the sum of divisors function has
never been satisfactorily extended to an algebraic number field. The function is, of course, easily
defined; however, the literature contains no attempts to define the concept in any algebraic
number field other than Q(y=I), and this is almost certainly due to the difficulties experienced in
proving the analogues in Q(y=I) of the best—known theorems involving the sum of divisors
function. The sum of divisors function, in this respect, stands apart from the other familiar
number—theoretic functions. The Euler phi—function and the number of divisors function, for
example, are readily extended to a unique factorization domain having a finite number of units,
for they are simply counting functions, and, the Moebius function was defined in Q(y=1) at the
turn of the century (in 1901 by Gegenbauer [1] (see Dickson [2], vol. 1, p. 447)). The analogue
of each of the best—known results involving these functions, including, of course, the generalized
Fermat theorem and the Moebius inversion formula have been shown to hold in those fields in
which these functions have been defined.

The most widely—known theorem involving the sum of divisors function, apart, possibly,
from the theorem establishing the multiplicative nature of the function, is the Euclid—Euler
theorem characterizing the even perfect numbers in Q:
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THEOREM E-E. A rational integer n is an even perfect number iff there exist rational
primes p and 2P — 1 such that n = 2p_1(‘2p - 1).

It is the analogue of this theorem which reason would suggest must be provable if an
extension of the sum of divisors concept to an algebraic number field is to be accepted as valid
and appropriate. Indeed, nearly all researchers who have examined this problem and have
obtained publishable results have considered the existence of perfect numbers in the field.

That the analogue of Theorem E—E has not been proven in an algebraic extension of Q
(this is not quite true—see our comments below) is related to two problems which arise.

The first of these is that each of the concepts "positive", "sum of divisors", "Mersenne
number", "perfect number”, and "even" must have a counterpart in the algebraic extension of Q
which is reasonable and "natural" in some sense. A moment's reflection reveals that there may
be several reasonable ways to define each of these concepts, so that many combinations of the
definitions are possible. This problem was discussed by Spira {3] whose definitions in Q(y=T) of
"sum of divisors" and "Mersenne number" we have used in constructing our definitions in this
paper. Spira proved an analogue of Euclid's theorem stating the well-known sufficient condition
that an even integer be a perfect number; using Spira's definitions, the author of this paper
subsequently proved [4] an analogue of Euler's converse, subject to the restriction that the
perfect numbers considered are primitive, i. e., not divisible by any other perfect number. (All
perfect numbers in Q are, of course, primitive.) While these results come close to meeting the
criteria that the concepts have been appropriately defined in an algebraic extension of Q, they
appear to fail in one important respect. As W. D. Geyer [5] has properly mentioned in his
review of Hausmann and Shapiro's article [6], "Spira has generalized the notion of a perfect
number to elements of Z[i] in a certain artificial way...". A perfect number had been defined as
one whose divisor sum equals the product of the prime of least norm and the number itself.
However, there is implicit in Spira's definition a relationship which makes his definition of
perfect number much less artificial than might appear. We will discuss this point more fully in
section 5.

The second problem encountered by the researchers who have examined the question of
whether an analogue of Theorem E-E can be proved in Q(y=1), and which is, in fact,
encountered in any unique factorization domain K having a finite number of units, is that Euler's
proof ([7], p. 88, or see [§]) that all perfect numbers are of the form 2p—1(2p — 1) for primes p
and 2P — 1, and the variation of Euler's proof (apparently due to Dickson [9]) which appears in
most introductory number theory texts, do not generalize to K. This is related to the fact that
the sum of the divisors of a rational integer exceeds any partial sum of its divisors, whereas in
K, the sum ¢ of the divisors of an integer may be "closer" to zero than a partial sum of its
divisors. (This is under the assumption that ¢ is a mapping from K into K.) As an example,
using Spira's definition of ¢ in Q(y=1) (see our Definition 2), |o((1+2i)2)| = 37, whercas
|o((1+2)%) — 1| = ViD.

In this paper, we overcome each of these difficulties to show that there exists a very
nice—and very natural-——extension of the sum of divisors function and the other concepts
mentioned above to all unique factorization domains having a finite number of units which yields
the analogue of Euclid's theorem stating the sufficient condition that an integer be a perfect
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number, and which vields the analogue of Theorem F—E iu thosc tickls having more than two
units (i. e in Q(y=T) and Q(y=3)). Resolution of the hirat problem mentioned above involves
examining the reasonable alternatives to our definitions and showing that they cannot lead 1o an
analogue of Theorem E—E. The second problemt is 1esolved by first improving o result of
Mitrinovic to obtain an inequality which reduces. in the held of rational integers, to the
well-known inequality a(pt)/pt > (p + 1)/p, for p prime, often used in research on odd perfect
munbers; this incquality is then used in obtaining the desired result.

2. THE DEFINITIONS.

Let F be a unique factorization domain (UFD) which has at most a finite number of
units. This requirement implics that F is Q, or Q(yD) for D = -1, -2, -3. —7. =11, —19, =43,
—67, 00 —163. If F # Q, and a = a + hyD is in F, the conjugatc o - YD is denoted by a¥,
and the norm ||aj] of @ is the rational integer aa*. If F = Q. the conjugate of a € I' is a itself,
and al| = a*.

We shall state all the definitions and our main results in this section and discuss these
definitions in the next section In our first definition, we select a subsct of the integers in T
containing exactly one associate of each integer in F.

DEFINITION 1. Let v be the number of units in F. It F = Q. P denotes the set of
positive integers. If F # Q, P denotes the sct of integers a in F such that 0 <arg a < 27/v.
The set consisting of the conjugates of the elements of P is denoted by P*.

Let 7 # 0 be any integer in F, and ¢ be the unique unit in I such that for primes
k.
Ty oo Ty inP, n= eH7ri g

DEFINITION 2. The sum o of divisors of 5 is defined multiplicatively by

DEFINITION 3. With the exception of lim - nf/e. the terms of the product

(1 + At ') are said to be the proper divisots of 7

DEFINITION 4. The integer 7 is a peifect number if the sum of the proper divisors of )
equals 7.

It is not necessary to define even intcger in I' (see Section 7 for additional comments on
this point): instead, it suffices to partition the perfect numbers into two classes. Let 7 be a
prime in P such that 7 — 1 is a unit. We note that I contains a unique prime in P of the form

"1 4+ a unit" except when F = Q(v=3), in which case both 2 and Ltﬁ are of this form.
k;
DEFINITION 5. The perfect number g = (llzri LT € P. is said to be an E—pcifect

nunber in Fif 7 = m for some i. If 7 # m for any i, n is said to be an O—peifect number.



16 W.L. MCDANIEL

DEFINITION 6. The integer o(rk_l) = (Tk - 1)/(r = 1) = M is called an F~Mersenne

number; if Mk is prime in F, Mk is called an F—Mersenne prime.

DEFINITION 7. The perfect number 7 is said to be primitive if there exists no perfect
number « # 7 such that a|7n. A perfect number which is not primitive is said to be imprimitive.

The main results of this paper are the following analogues of the Euclid and Euler
theorems characterizing the even perfect numbers.

THEOREM 1. (Analogue of Euclid’s theorem). Let Mp be an F—Mersenne prime. If
Mp € P = Tp_lMp is a perfect number.

THEOREM 2. (Analogue of Thm. E-E). Let F be Q, Q(v=1), or Q(y=3), and x be an
integer in F. The integer n = 7 "u is a primitive E—perfect number if and only if k is a
rational prime, and g is an F—Mersenne prime in P*. If F is Q or Q(y=3), therc exist no other
E—perfect numbers, i. e., all E-perfect numbers are primitive.

3. DISCUSSION OF THE CONCEPTS DEFINED IN SECTION 2.

The reader will note that if F is Q, Definitions 1 through 6 are the familiar definitions of
the corresponding concepts in Q provided E—perfect and O—perfect are read as even perfect and
odd perfect, in Definition 5 (except that in addition to defining ¢ in the usual way if 7 is a
positive rational integer, we have, also, defined o for 5 negative in Definition 2). Theorem 1 is
Euclid's theorem in Q, and Theorem 2 is Theorem E—E. While these definitions are, for the
most part, quite natural, alternate definitions are possible, and some have been employed with
partial success in previous investigations. The rationale for our choices goes beyond the desire to
extend the concepts in a natural way, however, and we shall see that alternate reasonable choices
for the definitions do not lead to fully satisfactory analogues of Theorem E—E.

The Set P. In Q(y~I) (whose units are 1, #i), P has been defined to be the first quadrant of
the complex plane including the positive half of the real axis and excluding the imaginary axis,

and in Q(y=3) (whose units are #1, 1 *2’/__3 and L *2‘/__3), P is the first sextant of the complex

plane including the positive half of the real axis and excluding the axis y = y3x; all remaining
fields have only the units 1 and —1, and in these fields P is the upper half—plane including the
positive but not the negative real axis.

It will be seen in Section 6 that an analogue of Euler's converse of Euclid's theorem
requires that the primes = in P satisfy the condition that ||a(7rk)/ 7rk|| > 1. It is well-known
that this inequality holds in Q, and Mitrinovic ([10], p. 140) proved that it holds for a any
complex number such that Re @ > 1; it, in fact, fails to hold for infinitely many powers of each
complex number « such that Re @ = ¢ < 1. Our definition of P assures that in Q(y=TI) and
Q(¥=3) this inequality holds for = € P; If F # Q, Q(y=1), or Q(y=3), no choice for P such that
TeEP 2 ||o(1rk)/ 7rk|| > 1 is possible, since, in each of these fields, there exist integers both of
whose associates have their real part < 1 (suggesting the reason for the failure of the Euler
converse for these fields). Definition 1 was motivated, also, by the fact that in Q(y/=3), P
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contains two primes 7 such that 7 — 1 is a unit—the validity of the analoguc of Theorem E-E
for each of the primes 7 demonstrates the essential nature of the concept “even“, as we have
extended it.

An alternate choice for P which has been made in at least one investigation of perfect
numbers in Q(v=1) (Randall, [11]) involved choosing P so that the positive real axis is an axis of
symmetry for P. With P so defined, however, it is not possible to prove the analogue of
Theorem E—E in either Qy=T or Q(y=3): In order to show that 7 is a perfect number of the
form n = ca'k-lﬂ, for ¢ a unit and and « and B prime in P, one can show that o must be
1+ ¢! and 8= P However, in Qy=1, 1 + lisa prime in P only if el = i, implying
that 8 = 2k/2(coszl—rk + i singk) —1; but, then, S € P only if k =0 (mod 8), and 3 prime

implies that, in addition, k is a rational prime, which is clearly not possible. Similarly, in Qv=3,
14+ ¢lisa prime in P only if el=1 or (1 + y=3)/2, and in the latter case, we have
g = ak -1= 3k/2(cos gk + i sin gk) — 1 which implies, as above, that k = 0 (mod 12), so

that, again, 8 is not prime; it follows that if 7= (3 + y=3)/2, Q(v=3) has no E-perfect
numbers of the familiar form specified in Theorem 2. Randall showed, for this choice of P, that
if a perfect number in Q(y=1) is defined by o(n) = 27, then all perfect numbers in Q(v=T) have
at least three prime factors and 5 is the only perfect number < 106.

The Sum of Divisors Function. Previous investigations of problems involving the sum of divisors
function in Q(y=T) have used the concept as defined in Definition 2 [3], [4], [11] (although not all
have required that the prime factors of n be in the set P as we have defined it), or, have defined
o to be the sum of the norms of the divisors of n [12). In related work, Hausmann and
Shapiro [6] investigated perfect ideals over the Gaussian integers, defining the sum of divisors of
an ideal to be the sum of the norms of the ideal's divisors; in this paper, the authors found only
two perfect ideals and showed that there are no others having fewer than five distinct prime
factors.

Perfect Number. Definition 4 is, of course, the classical definition of a perfect number. In view
k.
of Definition 3, 7 = €Il is perfect if o(n) — /e = 7, that is, if o(n) = (1 +f_1)7). We note

that if p€ Q, e—l is 1, and, clearly, this relation corresponds to the familiar condition that
a(n) = 21.

Even Perfect Number. Our decision to classify the perfect numbers as E—perfect numbers or

O—perfect numbers as opposed to defining an integer 7 in F as even iff |5 is related to the fact
that the laws of parity do not necessarily hold in F under this definition. They do hold if

F # Q(v=3); however, it is not difficult to construct examples to show that if F = Q(y=3) and
7 = (3 + y=3)/2, the sum of two odd integers may be odd. There is, on the other hand, no
requirement that the partitioning of perfect numbers into two classes satisfies the laws of
parity—the sum of two even perfect numbers in Q, for example, is not an even perfect number.

The concept of "evenness" in F may be defined by any one of the following:
i) nis even if 2|n;

ili) n is even if n is divisible by the prime in F of least norm;

(

(i) nis even if n is divisible by the prime factor of 2 of least norm;

(

(iv) n is even if n is divisible by a prime of the form 1 + u where u is a unit.
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While these definitions ate equivalent in Q, it is teadily seen that they are vot equivalent
in, for example, Q(v=I) and Q(v=3). We have not chosen 1o extend the concept of "evenness”
by using any of the first three definitions because, in each case, the analogue of T'heorem E—F
fails in one or more fields F (it fails in Q(y=1) for (i}, and in Q(v=2) for (ii) and (iii), fo1
instance). The concept even integer in an algebraic nuribar field will be discussed further in
Section 7.

F—Mersenne Number. The definition is identical to the definition of Mersenne number in Q. As
in Q. Mk is a prime in F only if k is a rational prime

A. TIIE PROOF OF THEOREM 1 AND A LOWER BOUND FOR [lo(x%)/.

Theorem 1 is readily established.

PROOF OF TIHEOREM 1. By definition, Mp = a(rp_l) = (- 1)/(r=1). Henee,

——— M,, implies that
— p"‘l = 1 )
o(n) = o(r" ")o(M,) = M a(M ).

Now, if 7—-1=1, Mp=2p—1 is in P;: if r—1%#1, 7-1=1i (if ne QW-I)), m
*
T—1=(1++-3)/2 (if ne Q(=3)). In either case, since, by hypothesis, Mp e, the

associate of Mp in P is Mp(r —1) = 7 — 1. Hence,

o(n) = M o(M) = Mpo(r? —1) = M 7P = m QE.D

In order to prove Theorem 2, we first obtain an inequality which reduces 1o the
well--known lower bound often used in research on odd perfect numbers:

o)/t 2 (0 + 1)/p,
where equality holds iff t = 1.

Mitrinovic ([10], p. 140) published a proof that if z is an arbitrary complex number with
Re z > 1, then ||(zt+1 —1)/(z — 1)}| 15 bounded below by ||zt||. We now improve upon this
lower bound for Re z > 5/4.

THEOREM 3. Letz =x + iy = rew. with x > 5/4. If t is a positive integer,
142+ o+ 280> 127 (2l + 2x = 1),
and. moreover, if |y| < x —1,
I+ 2z + o+ 2402 27 (2l + 2x + 1),

with equality holding iff t = 1.

PROOF. It =1, |l + 2] = (1 + x)% + % = Jlal + 2x + 1.
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Ift =2
It +z+ 22 = flzll-Ilz” + 1 + 2]
= flzll- Ozl + 2¢ + 1+ 2x% + 2x + 1 = 27)/|lz]
llzll- (llzll + 2x — 1) for all y,
> { lzll- (lzll + 2x + 1) for |y| < x.
If ¢33,

—2t

I+ 2+ o+ 28 = |02 + r 2 = 2 heos(t + 1)0/(c% — 2x + 1)

> Y- (2 = 202/ - 2x + 1),

Su2pposing that (r2 - 2r_2)/(r2 —2x + 1) is less than (r2 + 2x — l)/r2, and then less than
(r" + 2x + 1)/r2 when |y| < x — 1, leads to the desired contradictions.

COROLLARY. If 7 is a prime in Q(v=3) and x + yy=3 is the associate in P of r,
t
lo(x¥)/at > (lll + 2x — 1)/lixll;
ify<x—1,
t
lo(x*)/al > (Il + 2x + 1)/llll,
with equality holding iff t = 1.

PROOF. Since ||n]| = |Ix + yv=3|| and lo(a)l = [I1 + ... + (x + yv=3)Y|, the corollary
is merely a restatement of the theorem for z = 7 a prime in Q(y=3), provided we show that
x 2 5/4.

Because x + yy=3 is an integer in Q(v=3), x + yy=3 = (a + by=3)/2, where a and b are
rational integers of the same parity. Since this integer is in P, b < a, and it is therefore
immediate that x = a/2 is not 1/2 nor 1. So, x 2 3/2 > 5/4.

If z = p, a rational prime, the second inequality of Theorem 3 (or of the Corollary)
becomes the bound a(pt)/pt >(p + 1)/p.

5. E-PERFECT NUMBERS IN Q/-I.

We have stated, in the Introduction, that while Spira defined an integer 7 in Q(y=I) to
be a perfect number if o(n) = To™h where T is the prime in P of least norm (that is,

To =1+ i), this definition, in fact, implies a more fundamental relationship. We shall show
that in this section, and prove Theorem 2 for F = Q(y~1).

Our Definitions 1, 2 and 6 (for F = Q(y=1)) are those used by Spira in defining P, "sum
of divisors" and "Mersenne number" in Q(y=I), and Spira defined the integer 7 to be even if
(1 +1)|9. Incorporating Spira's proof of the sufficiency in a theorem characterizing the even
perfect numbers in Q(y=T), under the above definitions, the author proved [4]

THEOREM A. 7 is an even primitive perfect number iff there exists a rational prime

p = 1 (mod 8) and a Mersenne prime Mp such that n = (1 + i)p—lMp.
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We shall show that Theorem A, under Spira's definitions of even integer and perfect number, is
equivalent to our analogue of Theorem E-E, i. e., to Theorem 2 with F = Q(v=T).

Our definition of P and 7 in Q(y=1) imply that r =1 + i =1

o 50 in Theorem A, 7 is

equal to rp_lMp. Since

My = (P = 1)/(r 1) = 2/ %(cos Tp + i sin Tp) — 1)/,

it is readily seen that the condition that p =1 (mod 8) is equivalent to M p € P*.  Finally,

under Spira's definitions, 7 = crp"lp, for € a unit and g the product of prime factors in P, is an
even perfect number iff o(n) = (1 + i)y, and, by the observation in Section 3 concerning our
Definition 4, n is E—perfect iff o(5) = (1 +c_1)n. It is now clear that Theorem A and Thcorem
2 with F = Q(y~1) are equivalent if ¢ = —i. But this is indeed the-case, for, upon observing
that the associate in P of Mp is MI') = iMp, we see that the perfect number g = (1 + i)p_lMp,

1
in Theorem A, can be written 5 = —iP M

p (M;)e P); therefore 7 is of the form

n= erp_lu, with € = —i.

6. E-PERFECT NUMBERS IN Q(+-3).

In this section, we shall complete the proof of Theorem 2.

The Form of E—Perfect Numbers in Q(=3). In the proof of the following lemma, we let
Ny = Ml

LEMMA 1. If, for (r,u) = land k > 1, o = rk_lp is a perfect number in Q(v=3), then
the Q(v=3)—Mersenne number M, = a(rk_1 ) is prime.
PROOF. Assume g = rk"lu is a perfect number in Q(y=3). Let = = x + yy=3 be any
prime factor in P of M;. Since (T,Mk) =1,

= o(n) = o(** V)olw) = Myo(w) (6.1)

implies that |7, and hence, y; we let a be the largest rational integer such that 7ra| u.  Since,
by the Corollary to Theorem 1, Ila(at)/atll > 1 for any prime power at, we have, upon using

the multiplicative property of o,
— k
1= llo(m/rll 2 lo(F ) o(a®)/ 2 > Nl + 2x = D/l -1l
In the proof of the Corollary to Theorem 3, we observed, for 7 = x + yy=3, that x 2 3/2. Since

the only prime in P having its real part equal to 3/2 is 7, x > 2; hence, applying the Corollary
to Theorem 3 to the above inequality,

el > Ny(2x = D/ = N 2 3N /(A - Ny).
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Suppose 3Nk/(||r||k = Np) < Nkl/‘“). Now, if =2 N_= (2k - 1)2, and if 7= (3 + y=3)/2.

My = [35/2(cos ik + i sin k) — 1]/(r — 1), implying that
Ny = (5 = ) -1 = 86 - 235 cos T4 1, (6.2)

Substituting and simplifying, we find that, for each value of r, the resulting inequality docs not
hold for k > 1. Since M, is a factor of 7, it follows that | > I\'kl/2 = ||Mk||l/2; hence, for

some unit €, T = ch, implying that Mk is primne.

THEOREM 4. If 5 is an DL-perfect number in Q(y=3), then there exists a
Q(vy=3)—Mersenne prime, Mp in P* such that for some positive rational integer t > 1 and integer

6 such that (1,8) = 1, p = r""lMptﬁ.

PROOF. Since Mk is a factor of , Lemma 1 implies that an E—peifect number in
Q(v=3) has the form specified in the theorem. cxcept that it has not been shown that Mp € p*

when 7= (3 + y=3)/2 (when 7 = 2, M = K _1ep= P*). Assume that 7 = (3 + /=3)/2

and that 9 = rp—lp is a perfect number in Q(y=3). Then,

I7Pull = rall = Nlo(mll = MLl oGl
implies

IMpll = PN (ledl/Notoll) < 7P| = 3P (6.3)
Using (6.2), we have

3P — 2.3P/2. g gp +1 < 3P, (6.4)

It is clear that (6.4) holds only if cos %p is positive. That is, only if p = 0, 1, or 2 (mod 12).
Since p is a rational prime, p is not congruent to 0 or #2, modulo 12, unless p = 2. If p = 2,

, - =5 .43
however, Mp—'r+l-2+ 2,aud

1= |la(n)/mll 2 ||a(r)rr(M2t)/12.M2t"
2 [la(r)a(MI/9-IMyll = lla(MII/9 = 13/9.
Thus, p = 1 (mod 12). Suppose p = —1 (mod 12). Then
M, = @2 g _ 3Py 00 1),

and the associate in P of M p is
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a=pPtN/2 _y 4 302 31120,
It follows, using the Corollary to Theorem 3, that

ot/ rall = o(P~)a(M, Yol 6)/ PN, 4]

> . PN
M- (1Ml + 2Re @ + 1)/3PIM, |

3P +1)/3P > 1.

Hence, 7 E—perfect implies that p =1 (mod 12); since p =1 (mod 12) implies that
M, = (P2 _ g 3%y a7 — 1), M is in P,

The Non—Eristence of Imprimitive E-Perfect Numbers in Q(y=3). Imprimitive perfect numbers
do not exist in Q, but imprimitive perfect numbers may exist in Q(y=I) (see [4]). The
possibility of the existence of an imprimitive perfect number in an algebraic number field is
related to the fact that if 7 is a prime in the field, f(t) = o(xt)/ x* may not be an increasing
function of t (as it is in Q). For example, in Q(v=3), if r=1+ 2/=3,
Ilo(w2)/1r2|| = 189/169 < 16/13 = |jo(x)/xl]. It is thus conceivable that if, for example,

n= rp—lMp is a perfect number, then ||a(rp—lMpt)/rpMpt|| < 1 for some t, and there exists

an integer § such that Ilo(rp_lMpté)/rpMptﬁll = 1. Indeed, this is precisely the situation in
Q(y=1). We shall show, however, that this does not happen in Q(v=3), i. e., that imprimitive
E—perfect numbers do not exist in Q(y=3).

LEMMA 2. Let Mp be a Q(y=3)-Mersenne prime in P*. The inequality
||a(Mp)/Mp|| < ||a(Mpt)/Mptl| holds for all rational integers t > 2.

PROOF. If r= 2', the lemma is clearly true. Assume 7 = (3 + y=3)/2. Suppose the
lemma is false, and let Mp = relo denote the associate in P of Mp. Now,

M : ty g b 2 _ t+1 t—1
oMl 2 oMM+ 1M, = 12 M — 17

which implies that

rt— 2% cos 20 + 1 > (r2H'2 - 2rt+1-cos(t+1)0 + l)/r2t"2.

That is,

—t—1

=3 _ 2rt_1-cos 20>r

r — 2-cos(t+1)0. (6.5)

Since, for Mp € P*,
]
(Mp)2 = [(3(p+1)/2 -2+ 3p/2i)/2]2 = r2(cos 20 + i sin 20),

cos 20 = (3P/2 — 3(Pt1/2 | 1y/2
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Substututing in (6.5),

P33P —2.3(0+1/2 4 1) ¢ 9lcos(i41)0 — VL

The left member of this inequality is > 10rt’—3 for p > 3; since the right member is negative for
t = 2 and is less than 2 for t > 3, we have a contradiction.

THEOREM 5. There exist no imprimitive E—perfect numbers in Q(y=3).

PROOF. Let 7 be an E—perfect number. By Theorem 4, g = Tp—lMpttS, with M € P*.

Now, using Lemma 2,
L= llo(m/rall = Io(>™)/Pll-llo(M,)/M, - llo(8)/

> llo(P )/ 7P lo(My)/M, -

However, by  Theorem 1, the integer rp_lMp is a perfect number, so
||a(rp_1)/rp]|-||a(Mp)/Mp|| = 1. Strict equality, then, must hold, so t = 1 and 6 is a unit, e
Now 7 = crk—lMp, implies that

o(n) = a(-rp—l)a(Mp) = Mpa(rp -1) = Mprp = 19/,

from which we conclude that ¢ = 1, proving the theorem.

It is clear that Theorem 2 is now essentially proved. The sufficiency was shown in
Section 4 and the necessity is a consequence of Theorems 4 and 5.

7. CONCLUDING REMARKS.

We have indicated, in Section 3, that the concept "even integer" was not defined in F in
part because the laws of parity fail to hold in Q(y=3). That is, if one defines 7 to be an even
integer iff 7|7, where 7 = 1 + u (u a unit in P), then the sum of two odd integers may be odd
in Q(v=3). (Another reason is that for 7 = (3 + y=3)/2, in Q(y=3), 2 is an odd integer!)

Other additive problems in algebraic number theory have involved defining an integer 7 of
the field as even if every prime ideal of the first degree which divides the rational prime 2 also
divides 7. (In a UFD, this corresponds to (ii) in our listing of alternate definitions of even, in
Section 3.) Most notable of these problems are, perhaps, the analogue of the Goldbach
conjecture and certain problems involving representations of integers as sums of powers of primes;
we refer the interested reader to [13], p. 4467 for a summary of the results on these and related
problems.

The analogue of Theorem 1 is provable, except in F = Q(y=2), under this definition of
even integer. (That is, if we define r =1 + i for F = Q(y=I), 7 = y=2 for F = Q(y=2), and
7 = 2 for all other fields F, and define 5 to be even iff 7|7.) However, under the definitions of
this paper, Q(y=2) was shown to have no E—perfect numbers (since there exists no prime



24 W.L. MCDANIEL

7= 1+ a unit in Q(y=2)), and under these alternate definitions, Theorem 1 is simply not truc
for F = Q(y=2). This exception points up, again, the observation that the proof in Q of
Theorem E—E relies, in an essential way, upon the fact that an even integer has the property
that it is divisible not by the "least" prime, but rather, by a prime of the form 1 + u, where u
is a unit.

Because many of the results concerning the form or existence of odd perfect numbers in Q
are hased on the inequality which we have extended to F in Theorem 3, it is anticipated that

the analogues of these theorems can be obtained in Q(v=1) and Q(v=3) using the concepts of this
paper.
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