INVARIANTS OF NUMBER FIELDS RELATED TO CENTRAL EMBEDDING PROBLEMS

H. OPOLKA

Mathematics Institute Bunsenstrasse 3-5 D-3400 Gottingen

(Received December 7, 1988)

ABSTRACT. Every central embedding problem over a number field becomes solvable after enlarging its kernel in a certain way. We show that these enlargements can be arranged in a universal way.

KEY WORDS AND PHRASES. Central embedding problems, strict cohomological dimension, Leopoldt-conjecture.

1980 AMS CLASSIFICATION CODES. 12A55, 12A60

1. CENTRAL EMBEDDING PROBLEMS.

Let K be a number field and let p be a prime number. Then there is a smallest natural number t = t(k,p) depending only on k and p, the so called p-exponent of k, with the following properties:

(1) Every central embedding problem $E_m = E(G, Z/p^m, c)$ for the absolute Galois group $G_k = Gal(\bar{k}/k)$ of k, where G = Gal(K/k) is the Galois group of a finite Galois subextension K/k of \bar{k}/k which is ramified only at p and ∞ and where $k(\mu_m)/k$ is provided by the cyclic, has exponent 42m + t. Recall that E_m is solvable, i.e. there is an epimorphism $\Psi : G_k + G(c)$ of G_k onto the central group extension G(c) defined by the co-cycle c:G x G + Z/p^m such that Ψ composed with the natural map G(c) + G yields the given epimorphism $G_k + G$, if and only if the class of (c) becomes trivial in the Brauer group $Br(k(\mu_m))$ of $k(\mu_m)$, $\mu_m =$ group of roots of unity of \bar{k}^* of order dividing p^m ; this means that if $\chi_m : Z/p^m + \mu_m$ is an isomorphism then (c) becomes trivial under the map

$$\widehat{\chi}_{\mathfrak{m}}: H^{2}(G, \mathbb{Z}/p^{\mathfrak{m}}) \stackrel{inf}{\to} H^{2}(G_{k}, \mathbb{Z}/p^{\mathfrak{m}}) \stackrel{\mathfrak{res}}{\to} H^{2}(G_{k}(\mu_{p})\mathbb{Z}/p^{\mathfrak{m}}) \stackrel{\chi_{\mathfrak{m}}}{\to} H^{2}(G_{k}(\mu_{p}), \overline{k}^{\star}) \stackrel{\simeq}{\to} Br(k(\mu_{p}))$$

where χ_{m}^{*} is the map induced by χ_{m} on cohomology see Hoechsmann, [1]). The exponent of E_{m} is the smallest natural number n > m such that the embedding problem E_{n} which is obtained from E_{m} by considering the co-cycle c:G x G + Z/p^m + Z/pⁿ is solvable.

In order to prove (1), choose for any natural number $\hat{m} > m$ an isomorphism $\chi_{\hat{m}}: Z/p^{\hat{m}} + \mu_{\hat{m}}$ such that $\chi_{\hat{m}}^{p^{\hat{m}-m}} = \chi_{m}$. Then we have a map $\hat{\chi}_{\hat{m}}: H^{2}(G, Z/p^{\hat{m}}) \rightarrow Br(k(\mu_{\hat{m}}))$, and the resulting diagram relating $\hat{\chi}_{m}$ and $\hat{\chi}_{\hat{m}}$ commutes. Since $\hat{\chi}_{\hat{m}}((c))$ can be represented by a Galois co-cycle all of whose values are roots of unity, the algebra class $\hat{\chi}_{\hat{m}}((c))$ splits and only if it splits locally at all places above p and ∞ and this is the case if it splits at ∞ and

$$(k_v(\mu_m):k_v(\mu_m)) \equiv 0 \mod p^m$$
 for all v above p;
p p

(see classels [2], p. 191, 10.5 ff). It is clearly possible to find a smallest integer d = d(k,p) depending only on k and p such that $\chi_{n}((c))$ splits with $\hat{m} = 2m + d$. For instance, for k = Q we can take d = d(Q,p) = 0 for all p. The p-exponent of E_m is the smallest natural number n > m such that the induced embedding problem E_n has a solution which is ramified only at p and ∞ . The smallest integer s > 0 such that the p-exponent of k (if it exists).

(2) If p does not divide the class number of $Q(\mu_p)$ then the strong p-exponent of every cyclotomic field $k = Q(\mu_{p1})$ exists and is equal to its (usual) p-exponent. This can be shown as follows: Let E_m be a central embedding problem for G_k . Then for t = t(k,p) the induced embedding problem $E_{2m} + t$ is solvable. The assumption implies that p does not divide the class number of $Q(\mu_{p1})$ for every 1 (see Iwasawa [3]). Therefore the Galois theoretic obstruction to the existence of a solution which is unramified outside p and ∞ as described in Neukirch [4], (8.1), is trivial.

The p-adic Leopoldt conjecture for k implies that $H^2(G_k(p),Q/Z) = 0$, where $G_k(p)$ is the Galois group of the maximal p-extension k^p/k which is unramified outside p and ∞ . This shows that every central embedding problem E_m for $G_k(p)$ has finite p-exponent, (see Opolka [5], (5.2)). Does this imply that the strong p-exponent of k is finite? If so, how is it related to the usual p-exponent of k? Conversely, if the strong p-exponent of k is finite then $H^2(G_k(p),Q/Z) = 0$ and the p-adic Leopoldt conjecture holds for k.

REFERENCES

- 1. HOECHSMANN, K., Zum Einbettungsproblem, JRAM, 229(1968), 81-106.
- 2. CASSELS, J.W.S., A. Fröhlich: Algebraic Number Theory, Ac. Press, London, 1967.
- IWASAWA, K., A Note on Class Numbers of Algebraic Number Fields, <u>Abh. Math. Sem.</u> Hamburg, <u>20</u> (1956), 257-258.
- NEUKIRCH, J., Uber das Einbettungsproblem der Algebraischen Zahlentheorie, Inventiones Math., 21 (1973), 59-116.
- OPOLKA, H., Cyclotomic Splitting Fields and Strict Cohomological Dimension, Israel J. of Math., 52 (1985), 225-230.