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ABSTRACT. In the first part of our work we show a condition for a semi-—
homeomorphism in the sense of Crossley and Hildebrand (s.h.C.H) to be a semi-
homeomorphism in the sense of Biswas (s.h.B). Certain relevant examples are provided.
Next, we define strong semi-homeomorphisms via '"nice'" restrictions of semi-
homeomorphisms ("global condition") and we show that the new class of functions
actually coincides with semi-homeomorphisms. Then, 1in the third part we introduce
local semi-homeomorphisms (l.s.h.C.H.) via a corresponding "local condition" for
restrictions. A few results pertaining to the preservation of some topological

properties under this new class of functions are examined.

KEY WORDS AND PHRASES. semi-homeomorphisms
1980 AMS Subject Classification Code. 54C10

1. s.h.C.H. VERSUS s.h.B.
We shall start with the following definitions.

A subset S c¢ X is said to be sem¢—open if there is an open set U c¢ X such that
UeScu.

A function f: X-2Y is said to be a semi-homeomosphism tn the sense of Grosslep
and Hildebsrand (or simply, s.h.C.H.) [1] 1if:

1. f ig bijective

2. f 1is irresolute (i.e. inverse images
of semi-open sets are semi-open)

3. f is pre-semi-open (i.e. images of
semi-open sets are semi-open)

Further, a function f: X~ Y is said to be a semi-homeomorphiom in _the _sensde_of

Biswas (or simply s.h.B. ([21), if
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1. f 13 bijective
Z. f 18 continuous
3. { 1s semi-open

Clearly every homeomorphism 1s both «.h.B and s.h.C.H. .

T. Neubrunn L3] has shown that there are s.h.C.H. that are not s.h.B. . Answering
his question Z. Piotrowski [4] has shown an example of a =.h.B. which is not s.h.C.H.
Further he also obtained certain conditions for a s.h.C.H. to be a s.h.B.

In this paragraph we shall prove the following.

Proposition 1. Assume Y has a clopen base. 1f f: X-

if is_one-to-one, semi-open
and somewhat continuous then f ig irresolute.
FROOF: Let A ¢ Y be semi-open. lLel x ¢ fTY9A) 1e. f(x) - vy ¢ A. We shall show

that x ¢ Int £ 1(A).

For any open set U contaiming x, the get f(U) 1s semi—-open and contains vy.
Further f(U) n A # #. Since f(U) is open, Y haviny a clopen base and A 1s open - all
semi-open and open sets coincide, under the assumption upon Y, there is a nonempty

open set G such that

G - f() n A. (1.1)

Clearly,
Fhe ¢ £FUEW A A ¢ £ NFD)) = U (1.2)

f being one-to-one.

Now, somewhat continuity of f implies that there is an open set V c f—l(G), Vazag.
Therefore V c U, V c f Y(A). And since U is an arbitrary neighborhood of x, we have
x € Int £-1(A). Thus f M(A) is semi-open. o

REMARK: The author is indebted to the referee for pointing out that Proposition 1
generalizes Theorem 2.2 of [5].

The assumption upon Y to have a clopen buse is essential. In fact:

EXAMPLE 2. There 1s a semi-open, semi-continuous (hence somewhat continuous!)
bijection f: [0,1] —— [0,1] which is aot irresolute. Take f(x) = x, 1f x € [0,;] ,
f(x) = x + 31; , if x € [é, g] . f(x) = -x + g , if x € (%,1 . Observe that

f-l[%, %] is not semi-open.

In fact, there 1s even a conttinuous, <emi-open injective function between two
topological spaces which is not irresolute. We shall provide here such an example,
originally designed for a different purpose.

EXAMPLE 3. ([4], Example 19, p. 8) Let X = Y = {a, b, ¢, d}. Let O, and O,
denote the topologies for X and Y, respectively, such that 0, = {@, X, {a}, {b},
fa,b}, {b,c,d}} and 6, = {#, Y, {a}, {b}, {a,b}}. Let f:(X,0,) —> (Y,0,) be the
identity function. It is easy to see that f 1s continuous and semi-open but not
irresolute, since {a,c} 1s semi~open in Y while it 1s not semi-open in X.

REMARK 4. Example 2 above 1s the best possible in the class of semi-continuous
bijections f: [0,1] --— [0,1) (or more generally, f: X->Y, X-compact, Hausdorff and Y
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being Hausdorff,) in the sense that if { is to be additionallv continuous, then, being

cont.inuous bijection from a compact, Hausdorff space onto a Hausdorff space, it is a

homeomorphism, (see (&1, Thm 2.1, p. 226). Now, every homeomorphism (actually
openess and continuity suffices) implies irresoluteness of f -~ we leave the proot of

this fact to the reader, also see L11].

Since it iy well-known that continuity and somewhat openess imply pre-semi-
openess, see also [1] we have the following Corollary from Proposition 1.

COROLLARY 6. Assume Y has a clopen base. If f: X» Y is s.h.B, then [ is
s.h.C.H. .
2. STRONG SEMI-HOMEOMORPHISMS ARE PRECISELY SEMI-HOMEOMORFHISMS.

In this paragraph a "semi-homeomorphism" stands for s.h.C.H. .

The following, seemingly stronger conditions (¥*) and (**) which define - what we
call- a atrong semi—homeomorphism are actually equivalent (!) to the semi-
liomeomorphicity of f, see the following.

THEOREM 6. A function f: X-»Y is a semi-homeomorphism if and only if:

(*) f is bijective and
(**) v U ¢ X, U-open, flli is a semi-homeomorphism

PROOF: In fact, it is easy to see that if f satisfies (*) and (*¥), then { is a
semi-homeomorphism - take U = X in (**). Conversely, let X = U {Uy : & € A}, where
each Uy is open and suppose that each restriction f{|Uy is both pre-semi-open and
irresolute. We shall show that f is also such.

Let (flUg) : Uy » Y denote the restriction of f to Uyg. We shall show that f is

irresolute. Really, given a semi-open set K ¢ Y we have:

1

£UK) = U f N 0 Uy s @ e A} 7 U E(FITE (KD : @& € Al (2.1

The latter set is semi-open as the sum of semi-open sets.
Similarly, we shall prove that f is pre-semi-open. Let L c X be semi-open, in X.
Then L = U {L n Uy : « € A}. Then:

f(L) = fF(UIL nUg : « € A=
= U fIL n Uy : @ € A} =

= U {(flUp (L) :ax € A} . (2.2)

And again, the latter set is semi-open, in Y. n
The following example shows that the assumption "for ewvesg open"” in (**) is real.
As one can see, the restrictions fIU« , @ € A are even homeomosphisma (') for every
Ug * X.
EXAMPLE 7. (See Example 3 of §1.) There is a function f: XY such that
1. f is bijective and

2. V Uyg ¢ X, Ug-open, « € A, flly is a homeomorphism
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(hence, a semi—-homeomorphism) whereas f(: XY is
not a semi-homeomorphism.

Really, flta}, fi{b} and flia,b} are homeomorphisms. Now, consider flib,c,d}. We
have X = Y = {b,c,d} and O, n X = {0, {b,c,d}, {b}}, whereas 0, n Y - {8, ib,c,d},
{b}}. And, here again, fli{b,c,d} is a homeomorphism.

3. LOCAL_SEMI-HOMEOMORPHISMS.

Local homeomorphisms, being a very natural generalization of homeomorphisms,

occupy an important place in topology, especially in the theory of 1-dimensional
continua (curves) as well as some parts of algebraic topology, see also [7] for an
extensive treatment of this topic.
Let us define our new class of functions. We say that a function f: XY is a
Local semi-homeomorphism in the sense of Crossley and Hildebrand if:
1. f is bijective and
2. ¥V xe€ X =U-open, x € U c X such
that fIU is a semi-homeomorphism in
the sense of Crossley and Hildebrand.
Well, it is easy to see that every semi-homeomorphism is a local semi-
homeomorphism; take U - X. Since every homeomorphism is a semi—homeomorphism, see [1]

we have the following diagram:

stron
homeomorphism > semi-‘homeogorphism &3 gemi-homeomorphism 2 local semi~homeomorphism

We shall now provide an example of a local semi-homeomorphism which is not a semi-
homeomorphism, showing that the arrow to the right is, in general, not reversable.

EXAMPLE 8. Consider Example 3, see §1. Take {a}, {b}, {b,c,d}, {b,c,d}, respec-
tively for open neighborhoods of a, b, ¢ and d, respectively. Using arguments similar
to ones applied in Example 7 we prove that f is a local semi-homeomorphism; it has
been shown in [4], p. 508 that f is not a semi-homeomorphism.

LEMMA 9. 1If for every x € X there is an open set U ¢ X, x € U such that flU is a
semi-homeomorphism in the sense of Crossley and Hildebrand, then f is somewhat
continuous (inverse images of every nonempty open set if nonempty it has the nonempty
interior) and { is somewhat open (image of every open nonempty set has the nonempty
interior).

PROOF: Let D be a dense set in X. We shall show that f(D) is dense in f(X).
This, in turn, shows that f is somewhat continuous.

In fact, suppose y € f(X)\f(D) and assume further that there is an open

neighborhood V containing y, such that:

) Vn f(D) = 6. (3.1

Since f is "onto", there is x € X, such that f(x) - y. There 1s an open set U 3 X

such that flU is a semi-homeomorphism, f being a local semi-homeomorphism. Clearly
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D n U is dense in U; further f(D n 1) is dense in f(U), f being semi-homeomprphism on
U. Now, f(U) is a semir-open set containing f(x) = y. By an elementary property of
semi-open sets, f(D n U) is dense in V n Int f(U), and hence, also in V n f(U). So,
V n f(D) # 4, contradicting (%).

Now, for somewhat openess part, consider a dense set D contained in f(X). We
shall show that f~1(D) is dense (in X). Suppose f~1(D) is not dense. So, there is a
point x € X and an open neighborhood U 3 x such that

(**) Unf (D) -6 . 3.2)

Without loss of generalitv we may assume that U is the open neighborhood of x from
the definition of local homeomorphism (or, simply, take the intersection of the two
sets, in question). Then f(U) is a semi-open set, free of points of D. For otherwise

the set:

£FT(F(U) n D) = £TL(E(U)) n £7H(D) = U n F7H(D) # 6, (3.3)

contradicting (**), which finishes the proof.

COROLLARY 10. Baireness is a local semi-topological property.

PROOF: See [81, Corollary 2, p. 410 and Lemma 9, above.

COROLLARY 11. Separability is a local semi-topological property.

PROOF: Every local semi-homeomorphism is somewhat continuous, and this implies
(see [91) that dense subsets are preserved, which in turn proves our claim.

We will close this work with the following natural
Question 12. What are the topological conditions for X and/or Y so that every local
semi-homeomorphism f: X»Y is a semi—-homeomorphism?
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