## ON PERVIN'S EXAMPLE CONCERNING THE CONNECTED-OPEN TOPOLOGY

## T.B.M. MCMASTER

Pure Mathematics Department Queen's University Belfast BT7 1NN Northern Ireland

(Received May 5, 1988)

ABSTRACT. Irudayanathan and Naimpally [1] introduced a topology for function spaces (called the "connected-open" topology) which has the property that the connected functions form a closed set provided that the codomain is completely normal. Pervin [2] gave an example showing that the proviso cannot be weakened to normality. The purpose of this note is to point out a lacuna in his demonstration, and to re-establish the validity of the example.

KEY WORDS AND PHRASES. Function space, connected-open topology, complete normality. 1980 AMS SUBJECT CLASSIFICATION CODES. 54C35, 54D15.

1. INTRODUCTION.

Let X and Y denote topological spaces, and F the set of all mappings from X to Y. For each connected subset K of X and each pair U, V of open subsets of Y denote by W(K; U, V) the subset

{f  $\in$  F : f(K)  $\subset$  U  $\cup$  V, f(K)  $\cap$  U  $\neq$   $\emptyset \neq$  f(K)  $\cap$  V}

of F. The collection S of all these sets W(K; U, V) is a subbase for the connectedopen topology T on F, introduced by Irudayanathan and Naimpally in [1] where it is proved that the collection  $C^{-2}$  of all connected (Darboux) functions is T-closed if Y is completely normal.

To show that normality of Y is not sufficient for this result, Pervin [2] took Y as a modification of the Tychonoff plank, with an open interval of reals interpolated between each ordinal and its successor in the construction; appealed to cardinality to obtain a function f from the unit interval X = [0,1] onto a subset  $A* \cup B*$  of Y, where A\* and B\* were separated but had no disjoint neighbourhoods in Y, and where  $f^{-1}(\{y\})$  was dense in X for every y in  $A* \cup B*$ ; and proved that any member W(K; U, V) of S which contained f must also contain a connected function. However, this does not suffice to establish that the (non-connected) function f belongs to the T-closure of  $C^{-2}$ , it being perfectly possible for every subbasic neighbourhood of a point to intersect a set without every basic neighbourhood doing so. We shall show that f is, nevertheless, a limit of connected (indeed, of continuous) functions.

## 2. PERVIN'S EXAMPLE REVISITED.

Let J denote the connected, compact  $T_2$  space formed from the second uncountable ordinal  $\overline{W}_{\Omega}$  by interpolating a copy of (0,1) between each element (other than the maximum) and its successor, and imposing the order topology on the resulting chain; and consider the product space  $Y = J \times [0,1]$ . (The space  $\overline{W}_{\omega}^*$  used here by Pervin instead of [0,1] is homeomorphic to [0,1].) Denote by a and b (respectively) the least and greatest elements of J, and by A\* and B\* the following subsets of Y:

$$A^* = [a,b) \times \{1\}, B^* = \{b\} \times [0,1)$$

(Pervin's definition of these sets is incompatible with his assertion that they are connected; the above is presumably what was intended.) Considerations of cardinality establish the existence of a mapping f from [0,1] onto  $A^* \cup B^*$  such that the preimage of each singleton is dense. It will now be shown that every neighbourhood of f contains a connected function.

Consider a typical basic T-neighbourhood

$$G = \cap \{W(K_i; U_i, V_i) : i = 1, 2, ..., n\}$$

of f, where (for each i)  $K_i$  is a connected subset of [0,1],  $U_i$  and  $V_i$  are open in Y, and  $f(K_i)$  is contained in the union of  $U_i$  and  $V_i$  and meets them both. No loss of generality will be incurred by assuming that the sets  $K_i$  are distinct, since

Denoting by j the number of degenerate intervals amongst the  $K_i$ , where  $0 \le j \le n$ , we can arrange the labelling so that  $K_i$  is a singleton for  $i \le j$  and is non-degenerate for i > j. The strategy of the proof is to determine a subset Z of Y of the form suggested by  $\alpha\beta\gamma\delta\epsilon\beta$  in the diagram below (which see), where x is chosen to ensure that Z is contained in  $U_i \cup V_i$  for all i > j, and z is selected so that Z includes at least one point of  $U_i \cap V_i$  for each i; a path-connectedness argument within Z will then produce a continuous function belonging to G.

For i > j,  $f(K_i)$  is the whole of  $A^* \cup B^*$  and is contained in  $U_i \cup V_i$ . Thus for each positive integer n the product of compact sets

$$\{b\} \times [0, 1-2^{-11}]$$

is contained in U<sub>i</sub>  $\cup$  V<sub>i</sub>, and a lemma of A.D. Wallace (see [3], p.142) allows us to find  $x_{i,n} \in [a,b)$  such that

$$(x_{i,n},b] \times [0,1-2^{-n}] \subseteq U_i \cup V_i.$$



Now [a,b) inherits from its cofinal subset  $\overline{W}_{\Omega} \setminus \{b\}$  the property that each countable subset is bounded above: choosing then a strict upper bound  $x_i < b$  for the sequence  $(x_{i,n})$  we see that

$$[\mathbf{x}_i, \mathbf{b}] \times [0, 1) \subseteq \mathbf{U}_i \cup \mathbf{V}_i;$$

and so if x denotes the maximum of the elements x; here chosen, we have

$$[\mathbf{x},\mathbf{b}] \times [0,1) \subseteq \mathbf{U}_{\mathbf{i}} \cup \mathbf{V}_{\mathbf{i}} \quad \text{for all } \mathbf{i} > \mathbf{j}. \tag{2.1}$$

(In the event that j = n, i.e. that all the  $K_i$  are degenerate, (2.1) may be obtained by an arbitrary choice of x < b.)

Still considering the case i > j, we see from (2.1) that the connected set  $A^* \cup (x,b] \times [0,1)$  is contained in the union of  $U_i$  and  $V_i$  and intersects them both; so it must be possible to choose a point  $t(i) = (t(i)_1, t(i)_2)$  of  $U_i \cap V_i$  such that either  $t(i) \in A^*$ , or else  $t(i) \in (x,b] \times [0,1)$ : and in the latter case, the observations that  $U_i \cap V_i$  is a neighbourhood of t(i) and that b is not isolated in J will allow us to assume that  $x < t(i)_1 < b$ . Turning now to the case  $i \le j$ ,  $f(K_i)$ is here a single point of  $(A^* \cup B^*) \cap U_i \cap V_i$ ; if this point lies in  $A^*$  we denote it by  $t(i) = (t(i)_1, t(i)_2)$ , while if it belongs to B\*, an argument like that above will yield  $t(i) = (t(i)_1, t(i)_2)$  in  $U_i \cap V_i$  satisfying  $x < t(i)_1 < b$ . Lastly let z denote the maximum of  $t(1)_1, t(2)_1, \ldots, t(n)_1$ : the consequence of the choices of x and of z is that the set

$$Z = [a,z] \times \{1\} \cup [x,z] \times [0,1]$$

includes the point t(i) of  $U_i \cap V_i$  for every i, and is contained in  $U_i \cup V_i$  for those values of i (if any) for which  $K_i$  is non-degenerate.

Now since z < b, the interval (x,z) contains only countably many elements of  $\overline{W}_{\Omega}$  and only countably many interpolated real intervals or parts thereof, so it possesses a countable dense subset. It is routine to verify that it contains a supremum and an infimum for each of its bounded subsets, and it has no least nor greatest element and no gaps. Thus by a well-known characterization due to Hausdorff ([4], p. 54) it is homeomorphic to the real line. Then [x,z] and, similarly, [a,z] are homeomorphic to bounded closed real intervals; and Z, being essentially the unit square in the real plane with a line segment attached to one corner, is path-connected. Choosing distinct elements  $k_i$  in  $K_i$  for each i, which will be possible since the  $K_i$  are themselves distinct intervals, this guarantees the existence of a continuous (and therefore connected) function g : [0,1] + Z such that  $g(k_i) = t(i)$  for each i. Regarding g as a mapping into Y, we see that it is common to all the sets  $W(K_i; U_i, V_i)$  and the demonstration is complete.

ACKNOWLEDGEMENT. The author would like to express his gratitude to Mr. Patrick O'Hanlon for bringing the problem to his attention, and for many valuable conversations.

## REFERENCES

- IRUDAYANATHAN, A. and NAIMPALLY, S. <u>Connected-open topology for function</u> <u>spaces</u>, Indag. Math., 28 (= Proc. Kon. Ned. Akad. v. Wetensch., A69) (1966), 22-24.
- PERVIN, W.J. On the connected-open topology, Indag. Math., 29 (= Proc. Kon. Ned. Akad. v. Wetensch., A70) (1967), 126-127.
- 3. KELLEY, J.L. General Topology, Van Nostrand, 1955.
- 4. HAUSDORFF, F. Mengenlehre (3rd edition), Dover Publications, 1947.