PRINCIPAL TOROIDAL BUNDLES OVER CAUCHY-RIEMANN PRODUCTS

L. MARIA ABATANGELO SORIN DRAGOMIR Università degli Studi di Bari - Dipartimento di Matematica Trav.200 via Re David n.4, 70125 BARI ITALY

(Received December 13, 1988)

ABSTRACT. The main result we obtain is that given $\pi : N \to M$ a T^s-subbundle of the generalized Hopf fibration $\bar{\pi} : H^{2n+s} \to \mathbb{C}P^n$ over a Cauchy-Riemann product $i : M \subseteq \mathbb{C}P^n$, i.e. $j : N \subseteq H^{2n+s}$ is a diffeomorphism on fibres and $\bar{\pi} \circ j = i \circ \pi$, if s is even and N is a closed submanifold tangent to the structure vectors of the canonical \mathscr{S} structure on H^{2n+s} then N is a Cauchy-Riemann submanifold whose Chen class is non-vanishing.

KEY WORDS AND PHRASES. Principal toroidal bundle, *Semanifold*, generalized Hopf fibration, framed C.R. submanifold, characteristic form. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODE: 53C40,53C55

1.- INTRODUCTION AND STATEMENT OF RESULTS.

As a tentative of unifying the concepts of complex and anti-invariant submanifolds of an almost Hermitian manifold, A. BEJANCU, [1], has introduced the notion of Cauchy-Riemann (C.R.) submanifold. This has soon proved to possess a largely rich number of geometrical properties; e.g. by a result of D.E.BLAIR & B. Y.CHEN, [2], any C.R. submanifold of a Hermitian manifold is a Cauchy-Riemann manifold, in the sense of A.ANDREOTTI & C.D.HILL, [3]. Let M^{2n+s} be a real (2n+s)-dimensional manifold carrying a metrical f-structure (f, ξ_{a} , η_{a} , \mathscr{D}), $1 \le a \le s$, with complemented frames, cf. [4]. A submanifold j : $N \rightarrow M^{2n+s}$ is said to be a *framed C.R. submanifold* if it is tangent to each structure vector ξ_{a} of M^{2n+s} and it carries a pair of complementary (with respect to $G = j^* \mathscr{D}$) smooth distributions \mathscr{D} , \mathscr{D}^{\perp} such that $f_x(\mathscr{D}_x) \subseteq \mathscr{D}_x$, $f_x(\mathscr{D}_x^{\perp}) \subseteq T_x(N)^{\perp}$, for all $x \in N$, where $T(N)^{\perp} \rightarrow N$ stands for the normal bundle of j. Cf. I.MIHAI, [5], L.ORNEA, [6]. Since f-structures are known to generalize both almost complex (s=0) structures and almost contact (s=1) structures, the notion of framed C.R. submanifold containes those of a C.R. submanifold (see e.g. [7], p.83) of an almost Hermitian manifold and of a

contact C.R. submanifold (see e.g. [7], p.48) of an almost contact metrical manifold.

Let $\bar{\pi} : H^{2n+s} \to \mathbb{C}P^n$ be the generalized Hopf fibration, as given by D.E.BLAIR, [8]. Leaving definitions momentarily aside we may formulate the following:

THEOREM A

i) Let N be a framed C.R. submanifold of an \mathscr{P} -manifold M^{2n+s} . Then the f-anti-invariant distribution \mathfrak{D}^{\perp} of N is completely integrable.

ii) Any framed C.R. submanifold of H^{2n+s} , (carrying the standard \mathcal{P} structure) is either a C.R. submanifold (s even) or a contact C.R. submanifold (s odd). The converse holds.

iii) Let N be an f-invariant (i.e. $\mathcal{D}^{\perp} = (0)$) submanifold of H^{2n+s} . Then N is totally-geodesic if and only if it is an \mathcal{P} -manifold of constant f-sectional curvature $1 - \frac{3}{4} s$.

iv) Any f-invariant submanifold of H^{2n+s} having a parallel second fundamental form is totally-geodesic.

It is known that compact regular contact manifolds are S^1 - principal fibre bundles over symplectic manifolds, cf. W.M. BOOTHBY & H.C.WANG, [9]. Eversince this (today classical) paper has been published. several "Boothby-Wang type" theorems have been established, cf. e.g. A.MORIMOTO, [10], for the case of normal almost contact manifolds, S.TANNO, [11], for contact manifolds in the non-compact case; more recently, we may cite a result of I.VAISMAN, [12], asserting that compact generalized Hopf manifolds with a regular Lee field may be fibred over Sasakian manifolds, etc.

There exists today a large literature, cf. K.YANO & M.KON, [7], concerned with the study of the geometry (of the second fundamental form) of a C.R. submanifold of a Kaehlerian ambient space. In particular, following the method of Riemannian fibre bundles (such as introduced by H.B.LAWSON, [13], towards studying submanifolds of complex space-forms, and developed successively by Y.MAEDA, [14], M.OKUMURA, [15]), K.YANO & M.KON, [16], have taken under study contact C.R. submanifolds of a Sasakian manifold M^{2n+1} (where M^{2n+1} is previously fibred over a Kaehlerian manifold M^{2n}) which are themselves S¹-fibrations over C.R. submanifolds of M^{2n} .

The last piece of the mosaic we are going to mend is the concept of canonical cohomology class (here after refered to as the *Chen class*) of a C.R. submanifold . Cf. B.Y.CHEN, [17], with any C.R. submanifold M of a Kaehlerian manifold there may be associated a cohomology class $c(M) \in H^{2p}(M; \mathbb{R})$, where p stands for the complex dimension of the holomorphic distribution of M. Although the canonical Hermitian structure (cf. [18]) of H^{2n+s} is never Kaehlerian (cf. [8], p.174) we show that the Chen class of a C.R. submanifold may be constructed as well and obtain the following : THEOREM B

Let $j : N \to H^{2n+s}$ be a closed (i.e. compact, orientable) submanifold tangent to the vector fields ξ_a , $1 \le a \le s$, of the canonical \mathscr{P} -structure on H^{2n+s} and assume there exists a T^{s} - principal bundle $\pi : N \to M$ over a CauchyRiemann product $(M, \mathcal{D}, \mathcal{D}^{\perp})$, $i : M \to \mathbb{C}P^n$, $(\mathcal{D} \text{ is the holomorphic distribution})$, such that $\bar{\pi} \circ j = i \circ \pi$ and j is a diffeomorphism on fibres. If s is even then Nis a C.R. submanifold whose totally-real foliation is normal to the characteristic field of H^{2n+s} and whose Chen class $c(N) \in H^{2p+s}(N; \mathbb{R})$, $p = \dim_{\mathbb{C}} \mathcal{D}$, is non-vanishing.

2.- NOTATIONS, CONVENTIONS AND BASIC FORMULAE.

Let M^{2n+s} be a real (2n+s)-dimensional C^{∞} -differentiable connected manifold. Let <u>f</u> be an f-structure on M^{2n+s} , i.e. a (1,1)-tensor field such that $\underline{f}^3 + \underline{f} = 0$ and rank(<u>f</u>) = 2n everywhere on M^{2n+s} , cf. K.YANO, [19]. Assume that <u>f</u> has complemented frames, i.e. there exist the differential 1forms η'_a and the dual vector fields ξ'_a on M^{2n+s} , i.e. $\eta'_a(\xi'_b) = \delta_{ab}$, $1 \le a, b \le$ s, such that the following formulae hold:

 $\eta_a^{\prime} \circ \underline{f} = 0$, $\underline{f}(\xi_a^{\prime}) = 0$, $\underline{f}^2 = -I + \eta_a^{\prime} \otimes \xi^{\prime a}$. (2.1) Throughout, one adopts the convention $\eta_a^{\prime} = \eta^{\prime a}$, $\xi_a^{\prime} = \xi^{\prime a}$. The f- structure is normal if $[\underline{f}, \underline{f}] + (d\eta_a^{\prime}) \otimes \xi^{\prime a} = 0$, where $[\underline{f}, \underline{f}]$ denotes the Nijenhuis torsion of \underline{f} , see e.g. H.NAKAGAWA, [20]. Let \mathscr{G} be a compatible Riemaniann metric on M^{2n+s} , i.e. one satisfying:

$$\mathscr{G}(\mathbf{f}\mathbf{X}, \mathbf{f}\mathbf{Y}) = \mathscr{G}(\mathbf{X}, \mathbf{Y}) - \eta'(\mathbf{X}) \eta'^*(\mathbf{Y}). \tag{2.2}$$

Compatible metrics always exist, cf. D.E.BLAIR, [4]. Such $(\underline{f}, \xi_{\underline{a}}', \eta_{\underline{a}}', \mathscr{G})$ has often been called a *metrical f-structure with complemented frames*. Let $\underline{F}(X, Y) = \mathscr{G}(X, \underline{f}Y)$ be its *fundamental 2-form*. Throughout we assume M^{2n+s} to be an *S-manifold*, cf. the terminology in [4], i.e. the given f-structure is

normal, its fundamental 2-form is closed and there exist s smooth real-valued functions $\alpha_{a} \in C^{\infty}(M^{2n+s}), 1 \le a \le s$, such that:

$$\mathbf{i} \ \eta' = \alpha \mathbf{\underline{F}} \ . \tag{2.3}$$

We shall need, cf. [4], [21], the following result. Let M^{2n+s} , n > 1, be a connected manifold carrying the \mathscr{P} structure (f, ξ'_{a} , η'_{a} , \mathscr{C}), $1 \le a \le s$. Then α are real constants, ξ'_{a} are Killing vector fields (with respect to \mathscr{C}) and the following relations hold:

$$\underline{D}_{\mathbf{X}} \xi_{\mathbf{a}}^{\prime} = -\frac{1}{2} \alpha_{\mathbf{a}} \mathbf{f} \mathbf{X}$$
(2.4)

 $(\underline{D}_{X} f) Y = \frac{1}{2} \alpha^{a} \{ [\mathscr{G}(X, Y) - \eta_{b}^{*}(X) \eta^{*b}(Y)] \xi_{a}^{*} - [X - \eta_{b}^{*}(X) \xi^{*b}] \eta_{a}^{*}(Y) \}$ (2.5) for any tangent vector fields X, Y on M^{2n+s} . Here \underline{D} denotes the Riemannian connection of (M^{2n+s}, \mathscr{G}) , and $\alpha^{a} = \alpha_{a}$, $1 \le a \le s$.

Let M^{2n+s} be an \mathscr{P} manifold with the structure tensors $(\underline{f}, \xi_{\underline{a}}^{*}, \eta_{\underline{a}}^{*}, \mathscr{G})$. Let \mathscr{M} be the smooth s-distribution on M^{2n+s} spanned by $\xi_{\underline{a}}^{*}$, $1 \leq a \leq s$. By normality one has $[\xi_{\underline{a}}^{*}, \xi_{\underline{b}}^{*}] = 0$, i.e. \mathscr{M} is involutive. If both \mathscr{M} and the structure vector fields $\xi_{\underline{a}}^{*}$ are regular (in the sense of R.PALAIS, [22]) then the \mathscr{P} structure itself is termed *regular*. We shall need the main result of D.E. BLAIR & G.D.LUDDEN & K.YANO, ([21], p.175). That is, let M^{2n+s} be a compact connected (2n+s)-dimensional, n > 1, \mathscr{P} manifold; then there is a T^{s} -principal fibre bundle $\bar{\pi} : M^{2n+s} \to M^{2n} = M^{2n+s} / \mathfrak{M}$ and M^{2n} is a Kaehlerian manifold. Here M^{2n} denotes the leaf space of the s-dimensional foliation **#** and T^s is the s-torus. Also, cf. ([21], p.178), $\gamma = (\eta_1^{\prime}, ..., \eta_s^{\prime})$ is a connection 1-form in $M^{2n+s}(M^{2n}, \bar{\pi}, T^s)$. If X is a tangent vector field on M^{2n} , let X^H denote its horizontal lift with respect to γ . The Kaehlerian structure (J, g) of M^{2n} is expressed by:

$$J X = \bar{\pi}_* \underline{f} X^{H}$$
(2.6)

$$\bar{\mathbf{g}}(\mathbf{X}, \mathbf{Y}) = \mathscr{G}(\mathbf{X}^{\mathsf{H}}, \mathbf{Y}^{\mathsf{H}}). \tag{2.7}$$

Let \mathscr{L} be the smooth 2n-distribution on M^{2n+s} defined by the Pfaffian equations $\eta'_{a} = 0, 1 \le a \le s$. Then \mathscr{L} is precisely the horizontal distribution of γ . Since $\eta'_{a} \circ \underline{f} = 0$, the f-structure preserves the horizontal distribution. Therefore (2.6) may be also written $(J X)^{H} = \underline{f} X^{H}$. Let $\overline{\nabla}$ be the Riemannian connection of (M^{2n}, \overline{g}) . By ([21], p.179) one has:

$$\underline{D}_{X^{H}} Y^{H} = (\nabla_{X} Y)^{H} + \frac{1}{2} \alpha^{a} \mathscr{G} (\underline{f} X^{H}, Y^{H}) \xi'_{a} . \qquad (2.8)$$

REMARK

Let $\pi : N \to M$ be a Riemannian submersion, cf. B.O'NEILL, [23]. Then $\text{Ker}(\pi_*)$ is the vertical distribution, while its complement (with respect to the Riemannian metric of N) is the horizontal distribution of the Riemannian submersion. As to our $\bar{\pi}: M^{2n+s} \to M^{2n}$ a number of important coincidences occur. Firstly, if M^{2n} is assigned the Riemannian metric (2.7), then $M^{2n+s} \to M^{2n}$ is a Riemannian submersion. Moreover $\mathbf{a} = \text{Ker}(\bar{\pi}_*)$ and therefore the horizontal distribution of the Riemannian submersion is precisely \mathcal{L} .

Let N be an (m+s)-dimensional submanifold of M^{2n+s} , and M an m-dimensional submanifold of M^{2n} , such that there exists a fibering $\pi : N \to M$ such that $\bar{\pi} \circ j = i \circ \pi$ and j is a diffeomorphism on fibres. Both $i : M \to M^{2n}$, $j : N \to M^{2n+s}$ stand for canonical inclusions. Let $g = i^* \bar{g}$, $G = j^* \mathscr{G}$ be the induced metrics on M and N, respectively. Also we denote by ∇ , D the corresponding Riemannian connections of (M, g) and (N, G), respectively. Let B (resp. h) be the second fundamental form of i (resp. j) and denote by A (resp. W) the Weingarten forms. Let $T(M)^{\perp} \to M$ (resp. $T(N)^{\perp} \to N$) be the normal bundle of i (resp. j). We put $\xi_a = \tan(\xi_a^*)$, $\xi_a^{\perp} = \operatorname{nor}(\xi_a^*)$, where \tan_x , nor stand for the projections associated with the direct sum decomposition $T_x(M^{2n+s}) = T_x(N) \oplus T_x(N)^{\perp}$, $x \in N$. Then the Gauss and Weingarten formulae, (cf. e.g. [24],p.39-40), of i, j and our (2.8) lead to:

$$D_{X^{H}} Y^{H} = (\nabla_{X} Y)^{H} + \frac{1}{2} \alpha^{a} \mathscr{G}(\underline{f} X^{H}, Y^{H}) \xi_{a}$$
(2.9)

$$h(X^{H}, Y^{H}) = B(X, Y)^{H} + \frac{1}{2} \alpha^{a} \mathscr{G}(\underline{f} X^{H}, Y^{H}) \boldsymbol{\xi}$$
(2.10)

$$W_{V^{H}} Y^{H} = (A_{V} X)^{H} - \frac{1}{2} \alpha^{a} \mathscr{G}(\underline{f} X^{H}, V^{H}) \xi_{a}$$
(2.11)

$$D^{\perp}_{X^{H}} V^{H} = (\nabla \frac{1}{X} V)^{H} + \frac{1}{2} \alpha^{a} \mathscr{G}(\underline{f} X^{H}, V^{H}) \xi^{\perp}_{a}$$
(2.12)

for any tangent vector fields X, Y on M, respectively any cross-section V in $T(M)^{\perp} \rightarrow M$. Here ∇^{\perp} , D^{\perp} stand for the normal connections of i, j. Of course, towards obtaining our (2.9) - (2.12) one exploits the fact that $(i_* X)^{H}$ is tangent to N, while V^{H} is a cross-section in $T(N)^{\perp} \rightarrow N$.

REMARKS

1) Let $H(i) = \frac{1}{m}$ Trace (B) (resp. $H(j) = \frac{1}{m+s}$ Trace(h)) be the mean curvature vector of i (resp. j). As an application of our (2.9) - (2.12) one may derive:

$$(m+s) H(j) = m H(i)^{H} + \sum_{a=1}^{s} \left[\frac{1}{2} \alpha^{a} \operatorname{nor}(\underline{f} \xi_{a}^{\perp}) - D \frac{1}{\xi} \xi_{a}^{\perp} \right]$$
(2.13)

provided that $\{\xi : 1 \le a \le s\}$ consists of mutually orthogonal unit vector fields. In particular, if N is tangent to each structure vector ξ' , $1 \le a \le$ s, then N is minimal if and only if M is minimal. Indeed, if X is tangent to N, then (2.4) and the Gauss - Weingarten formulae lead to:

$$D_{X_{a}}\xi_{a} = W_{\xi} \perp X - \frac{1}{2}\alpha_{a} \tan(f X)$$
(2.14)

$$h(X, \xi_{\bullet}) + D_{X}^{\perp} \xi_{\bullet}^{\perp} = -\frac{1}{2} \alpha_{\bullet} \text{ nor } (\underline{f} X). \qquad (2.15)$$

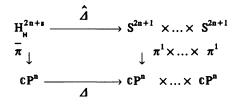
Now, if $\{\xi_a: 1 \le a \le s\}$ are orthonormal, one uses a frame $\{X_i, \xi_a^H\}$ (where $\{X_i: \xi_a^H\}$) $1 \le i \le m$ is an orthonormal tangential frame of M) such as to compute H(j). 2) Generally, if N is a submanifold of the \mathscr{P} manifold M^{2n+s} and N is normal to some ξ_a^{\prime} with $\alpha_a = 0$ then tangent spaces at points of N are f-anti-invariant, i.e. $f(T(N)) \subseteq T(N)^{\perp}$, $x \in N$. Indeed, by (2.4) and the Weingarten formula of N in M^{2n+s} , one has $\mathscr{G}(\alpha_a f X, Y) = -2 \mathscr{G}(\underline{D}_X \xi_a^*, Y) = 2 \mathscr{G}(W_{\xi} \perp X, Y)$ where from $W_{\xi} \perp = 0$ and $\underline{f} X$ is normal to N.

3. & MANIFOLDS AS HERMITIAN OR NORMAL ALMOST CONTACT

METRICAL MANIFOLDS.

We denote by CPⁿ the complex projective space with constant holomorphic sectional curvature 1 (with Fubini - Study metric) and complex dimension n, and by S^{2n+1} the (2n+1)-dimensional unit sphere carrying the standard Sasakian structure. Let π^1 : $S^{2n+1} \rightarrow CP^n$ be the Hopf fibration and set $H^{2n+s} = \{(p_1,...,p_s) \in S^{2n+1} \times ... \times S^{2n+1} \mid \pi^1(p_1) = ... = \pi^1(p_s)\}.$

We define a principal toroidal bundle by the commutative diagram:



where Δ denotes the diagonal map, while $\hat{\Delta}$ stands for the canonical inclusion. Let η' be the standard contact 1-form on S^{2n+1} . We put $\eta'_a = \hat{\Delta}^* \Delta^*_a \eta'$, $1 \le a \le s$ where $\Delta : S^{2n+1} \times S^{2n+1} \to S^{2n+1}$ are natural projections. Let Ω be the Kachler 2-form of \mathbb{CP}^n . Then on one hand $\gamma = (\eta_1^{\prime}, ..., \eta_n^{\prime})$ is a connection 1-form in $H^{2n+s}(\mathbb{C}\mathbb{P}^n, \bar{\pi}, T^s)$, and on the other $d\eta'_a = \bar{\pi}^* \Omega$, such that one may apply theorem 3.1 of [8], (p.163) such as to yield a natural *Structure* on H^{2n+s} . (Cf also [4], p.173). Let (f, ξ_a , η_a , \mathscr{G}) be the canonical \mathscr{P} structure

of H^{2n+s} . If s is even one sets:

$$\mathcal{J} = \underline{\mathbf{f}} + \sum_{i=1}^{s} \{ \boldsymbol{\eta}_{i} \otimes \boldsymbol{\xi}_{i} - \boldsymbol{\eta}_{i} \otimes \boldsymbol{\xi}_{i} \}$$
(3.1)

where $i = i + \frac{s}{2}$, $1 \le i \le \frac{s}{2}$. If s is odd, one labels the 1-forms η_a as follows: $\eta_0, \eta_i, \eta_{i^*}, i^* = i+r, 1 \le i \le r, s = 2r+1$, and similarly for the tangent vector fields ξ_{a} . We consider:

$$\varphi = \underline{\mathbf{f}} + \sum_{i=1}^{1} \eta_i \otimes \boldsymbol{\xi}_{i \bullet} - \eta_{i \bullet} \otimes \boldsymbol{\xi}_i \}.$$
(3.2)

The characteristic 1-form of H^{2n+s} , s even, is defined by:

$$\omega = 2 \sum_{i=1}^{s/2} \{ \eta_i - \eta_i \}.$$
 (3.3)

Let B = ω^{\dagger} be the characteristic field, where \dagger means raising of indices by \mathscr{G} . REMARKS

1) If s is even then $(H^{2n+s}, \mathcal{J}, \mathcal{G})$ is a Hermitian non-Kaehlerian manifold and its characteristic form is parallel. Indeed, if s is even, then J given by (3.1) is a complex structure and $(H^{2n+s}, \mathcal{J}, \mathcal{G})$ turns to be a Hermitian manifold, (cf. prop.4.1 in [8], p.174). Let $F(X, Y) = \mathscr{G}(X, \mathcal{J} Y)$ be its Kaehler 2-form. By (3.1) it follows that $\tilde{F} = F - 2 \sum_{i=1}^{s/2} \eta_i \wedge \eta_{i*}$; consequently (3.3) leads to

$$\mathrm{dF} = \omega \wedge \underline{F} \tag{3.4}$$

i.e. \mathscr{G} is not a Kachler metric. Now our (2.4) yields $\underline{D} \ \omega = \frac{1}{2} \sum_{i=1}^{s/2} (\alpha_i - \overline{\alpha}_{i,i}) \underline{F}$ on an arbitrary \mathscr{P} manifold, provided s is even. Yet for H^{2n+s} one has α_{1} -... = α , (cf.[8],p.173), i.e. ω is parallel.

2) Since d $\eta' = \bar{\pi}^* \Omega$, $1 \le a \le s$, it follows that ω is closed. Therefore H^{2n+s} , s even, admits the canonical foliation \mathscr{F} defined by the Pfaffian equation $\omega = 0$. Each leaf of \mathcal{F} is a totally-geodesic real hypersurface normal to the characteristic field of H^{2n+s} .

3) Consider the submanifolds $i : M \to CP^n$ and $j : N \to H^{2n+s}$ and assume that a T^s-subbundle π : N \rightarrow M of the generalized Hopf fibration, i.e. $\bar{\pi} \circ j = i \circ \pi$ and j is a diffeomorphism on fibres. Suppose N is tangent to the structure vectors ξ_{a} of the \mathscr{R} manifold H^{2n+s} . Then M is a C.R. submanifold of $\mathbb{C}P^n$ if and only if N is either a C.R. submanifold of $(H^{2n+s}, \mathcal{J}, \mathcal{G})$ or a contact C.R. submanifold of $(H^{2n+s}, \varphi, \xi_0, \eta_0, \mathscr{C})$. Note firstly that, if s is odd, then $(\varphi, \xi_0, \eta_0, \mathscr{C})$ is a normal almost contact metrical (a. ct. m.) structure on H^{2n+s} , (cf. [8], p.175). If $\xi_{a}^{\perp} = 0$, $1 \leq a \leq s$, and s is even then:

$$\mathscr{J}\xi_{i} = \xi_{i*}, \quad \mathscr{J}\xi_{i*} = -\xi_{i}, \quad \mathscr{J}X^{H} = (JX)^{H}$$
(3.5)
tangent vector field X on M of (2.6). Let us define $\mathscr{P}X = \tan(\mathscr{I}X)$

for any tangent vector field X on M, cf. (2.6). Let us define $\mathscr{P} Y = \tan (\mathscr{J} Y)$, \mathscr{P}^{\perp} Y = nor (\mathscr{G} Y), for any tangent vector field Y on N. Then:

 $\mathscr{P}^{\perp} \mathscr{P} \xi_i = 0, \quad \mathscr{P}^{\perp} \mathscr{P} \xi_i = 0, \quad \mathscr{P}^{\perp} \mathscr{P} X^{\mathsf{H}} = (\mathsf{F} \mathsf{P} X)^{\mathsf{H}}$ (3.6) where F, P are defined by (1.1) in [7] (p.76). Suppose for instance that (M, \mathcal{D} , \mathcal{D}^{\perp}) is a C.R. submanifold of \mathbb{CP}^n . Then P is \mathcal{D} -valued, while F vanishes on

 \mathcal{D} , i.e. FP = 0. By (3.6) one has $\mathscr{P}^{\perp} \mathscr{P} = 0$, and thus one may apply theor. 3.1 in [7] (p.87), such as to conclude that N is a C.R. submanifold of $(H^{2n+s}, \mathscr{J}, \mathscr{G})$. Note that, although stated for submanifolds in Kaehlerian manifolds, theor.3.1 of [7] (p.87) actually holds for the general case of an arbitrary almost Hermitian ambient space. The case s odd follows similarly from theor. 2.1 of [7] (p.55) which may be easily refined from the Sasakian case to the general case of a. ct. m. structures.

4) Let $(M, \mathcal{D}, \mathcal{D}^{\perp})$ be a C.R. submanifold of \mathbb{CP}^n , where \mathcal{D} (resp. \mathcal{D}^{\perp}) denotes the holomorphic (resp. totally-real) distribution. Let $\pi : N \to M$ be a T^s -bundle as in Remark 3). Let \mathcal{D}_N , \mathcal{D}_N^{\perp} be the holomorphic and totally-real (resp. the φ -invariant and φ -anti- invariant) distributions of N, provided that s is even (resp. s is odd). Let $\ell_{N,x}$ the natural projection on the first term of the direct sum decomposition $T_x(N) = \mathcal{D}_{N,x} \oplus \mathcal{D}_{N,x}^{\perp}$, $x \in N$. Cf. (3.7) in [7] (p.86), (resp. cf. (2.10) in [7] (p.53)) if s is even (resp. if s is odd) then ℓ_N is expressed by $\ell_N = -\mathcal{P}^2$ (resp. by $\ell_N = -\mathcal{P}^2 + \eta_0 \oplus \xi_0$) where $\mathcal{P} Y = \tan(\mathcal{J} Y)$, (resp. $\mathcal{P} Y = \tan(\varphi Y)$). In both cases one has:

 $\ell_{N} \xi_{a} = \xi_{a}, \quad 1 \leq a \leq s, \quad \ell_{N} X^{H} = (\ell X)^{H}$ (3.7) where $\ell = -P^{2}$. As the sum $\mathcal{D}_{x}^{H} + \mathcal{M}_{x}$, $x \in N$, is direct one obtaines $\mathcal{D}_{N,x} = \mathcal{D}_{x}^{H} \oplus \mathcal{M}_{x}$, $x \in N$. Indeed, one inclusion follows from (3.7). Conversely, let $X' \in \mathcal{D}_{N}$, then $X' = (\ell X)^{H} + (\ell^{\perp} X)^{H} + \lambda^{a} \xi_{a}$, $\lambda^{a} \in C^{\infty}(N), \ell^{\perp} = I - \ell$. By applying ℓ_{N} to both members one proves $X' \in \mathcal{D}^{H} \oplus \mathcal{M}$. It is also straightforward that $(\mathcal{D}^{\perp})^{H} = \mathcal{D}_{N}^{\perp}$.

4.- FRAMED CAUCHY-RIEMANN SUBMANIFOLDS

S. GOLDBERG, [25], has inaugurated a program of unifying the treatment of the cases s even, and s odd, and studied f-invariant submanifolds of codimension 2 of an \mathscr{P} manifold. To make the terminology precise, let $(N, \mathscr{D}, \mathscr{D}^{\perp})$ be a framed C.R. submanifold of M^{2n+s} ; we call N an f-invariant (resp. f-anti-invariant) submanifold if $\mathscr{D}_{x}^{\perp} = (0)$, (resp. if $\mathscr{D}_{x} = (0)$), for any $x \in N$.

Let M^{2n+s} be an \mathscr{R} manifold; let $x \in M^{2n+s}$ and $p \subseteq T_x(M^{n+s})$ a 2-plane. (Cf.[8], p.159), p is an f-section if it is spanned by $\{X, f X_x\}$ for some unit tangent vector $X \in \mathscr{Q}_x$. The Riemannian sectional curvature of (M^{2n+s}, \mathscr{G}) restricted to f-sections is referred to as the f-sectional curvature of the \mathscr{R} manifold. (Cf. also [21], p.183).

At this point we may establish i) of theor. A. Let X, V be respectively a tangent vector field on N and a cross-section in $T(N)^{\perp} \rightarrow N$. We set P X = $tan(\underline{f} X)$, F X = $nor(\underline{f} V)$ and f V = $nor(\underline{f} V)$. The following identities hold as direct consequences of definitions:

$$P^{2} + t F = -I + \eta \otimes \xi^{a}, \qquad F P + f F = 0, \qquad P t + t f = 0,$$

$$F t + f^{2} = -I, \qquad \underline{f} \ell = P \ell, \qquad F \ell = 0, \qquad (4.1)$$

$$\underline{f} \ell^{\perp} = F \ell^{\perp}, \qquad P \ell^{\perp} = 0.$$

Using (2.5) and the Gauss - Weingarten formulae of N in M^{2n+s} one obtaines: (D_X P) Y = W_{FY} X + t h(X, Y) +

$$+ \frac{1}{2}\alpha^{a} \{ [G(X, Y) - \eta_{b}(X) \ \eta^{b}(Y)] \ \xi_{a} - [X - \eta_{b}(X) \ \xi^{b}] \ \eta_{a}(Y) \}$$
(4.2)
for any tangent vector fields X, Y on N. Let X, $Y \in \mathcal{D}^{\perp}$. As D is torsion-free

and by (4.2) one obtains:

 $P[X, Y] = W_{FX} Y - W_{FY} X + \alpha^{a} \{\frac{1}{2} (X \wedge Y) \xi_{a} + (\eta_{a} \wedge \eta_{b}) (X, Y) \xi^{b} \} (4.3)$ At this point we may establish the following: LEMMA

Let $(N, \mathcal{D}, \mathcal{D}^{\perp})$ be a framed C.R. submanifold of the *P*-manifold M^{2n+s} . Then: $W_{FX} Y = W_{FY} X + \frac{1}{2}\alpha^{a} \{\eta_{a}(X) Y - \eta_{a}(Y) X - [\eta_{a}(X) \eta_{a}(Y) - \eta_{a}(Y) \eta_{a}(X)] \xi^{b}\}$ (4.4) for any X, $Y \in \mathcal{D}^{\perp}$.

Proof. By (4.1), P vanishes on \mathscr{D}^{\perp} . Using (4.2), for any X, $Y \in \mathscr{D}^{\perp}$, $Z \in T(N)$, one has:

$$0 = G((D_Z P)X, Y) = G(W_{FX} Z, Y) + G(t h(Z, X), Y) +$$

 $+ \frac{1}{2} \alpha^{a} \{ G(Z, X) \eta_{a}(Y) - G(Z, Y) \eta_{a}(X) + [\eta_{a}(X) \eta^{b}(Y) - \eta_{a}(Y) \eta^{b}(X)] \eta_{b}(Z) \}$

and finally $G(t h(Z, X), Y) = -G(W_{FY} X, Z)$ leads to (4.4).

By (4.3) and the above lemma we conclude P[X, Y] = 0, i.e. D^{\perp} is involutive.

Let us prove now ii) in theor. A. We analyse for instance the case s even. Let N a framed C.R. submanifold of H^{2n+s} . Let

$$\mathscr{P} = \mathbf{P} + \sum_{i=1}^{\mathfrak{s}/2} \eta_i \, \otimes \, \boldsymbol{\xi}_{i*} - \eta_{i*} \, \otimes \, \boldsymbol{\xi}_i \, \}, \qquad \mathscr{P}^{\perp} = \mathbf{F} \tag{4.5}$$

Next $\mathscr{P}^{\perp} \mathscr{P} = F P = 0$, and one applies theor.3.1 of [7], p.87. The case s odd being similar is left as an exercise to the reader. To prove the converse of ii) in theor.A we need to characterize framed C.R. submanifolds as follows. Let N be a framed C.R. submanifold of an \mathscr{P} manifold M^{2n+s} . Then (4.1) leads to $P \ell = P$, F P = 0, f F = 0, etc. One obtaines the following statement. Let N be a submanifold of the \mathscr{P} manifold M^{2n+s} such that N is tangent to the structure vectors ξ_a . Then N is a framed C.R. submanifold of M^{2n+s} if and only if F P =0. We have proved the necessity already. Viceversa, let us put by definition ℓ $= -P^2 + \eta_a \otimes \xi^a$, $\ell^{\perp} = I - \ell$. Since F P = 0, the projections ℓ , ℓ^{\perp} make N into a framed C.R. submanifold, Q.E.D. Now the converse of ii) in theor. A is easily seen to hold, i.e. both C.R. submanifolds of $(H^{2n+s}, \mathscr{G}, \mathscr{G})$, s even, and contact C.R. submanifolds of $(H^{2n+s}, \varphi, \xi_0, \eta_0, \mathscr{G})$, s odd, are framed C.R. submanifolds.

REMARKS

1) Let $(N, \mathcal{D}, \mathcal{D}^{\perp})$ be a framed C.R. submanifold of H^{2n+s} . By (4.5) one obtains:

$$\mathscr{P}^{2} = \mathbf{P}^{2} - \eta^{*} \otimes \boldsymbol{\zeta}^{*}. \tag{4.6}$$

Now the notion of framed C.R. submanifold appears to be essentially on old concept. For not only N becomes a C.R. submanifold of the Hermitian manifold H^{2n+s} , if for instance s is even, but its holomorphic and totally-real distributions are precisely \mathcal{D} , \mathcal{D}^{\perp} . Indeed, by (4.6) one has $\ell_N = \ell$, Q.E.D.

2) Due to (3.4) there is a certain similarity between \mathscr{P} manifolds and locally conformal Kaehler manifolds, cf. P.LIBERMANN, [26]. See also [12]. For instance, we may use the ideas in [2] (cf. also theor. 3.4 of [7], p.89) to

give an other proof of the integrability of the f-anti-invariant distribution of a framed C.R. submanifold. Indeed, let N be a framed C.R. submanifold of H^{2n+s} , s even. Let $X \in \mathcal{D}$, $Z, W \in \mathcal{D}^{\perp}$. By (3.4) one has 0 = 3 (d F)(X, Y, W) = -G([Z, W], J X). Hence $[Z, W] \in \mathcal{D}^{\perp}$. Note that, although N is C.R. in the usual sense one could not apply theor.3.4 or theor.4.1 of [7] (p.89-90) since H^{2n+s} is neither locally conformal Kaehler nor Kaehler.

To establish iii) let N be an f-invariant submanifold of H^{2n+s} . As a consequence of (2.5), for any tangent vector fields X, Y on N one has:

$$(D_{X} f) Y = \frac{1}{2} \alpha^{a} \{ [G(X, Y) - \eta_{b}(X) \eta^{b}(Y)] \xi_{a} - [X - \eta_{b}(X) \xi^{b}] \eta_{a}(Y) \}$$
(4.7)

$$h(X, \underline{f} Y) = \underline{f} h(X, Y). \tag{4.8}$$

Let k(X, Y) be the Riemannian sectional curvature of the 2-plane spanned by the orthonormal pair $\{X, Y\}$ on N; using the Gauss equation, i.e. equation (2.6) in [24], (p.45), and the notations in [4], (p.161), i.e. H(X) = k(X, fX), $X \in \mathcal{P}$, one obtains:

$$1 - \frac{3}{4} s = H(X) + 2 || h(X, X) ||^{2}$$
(4.9)

as H^{2n+s} has constant f-sectional curvature, (cf.[8], p.173). By (2.15) and f-invariance one has $h(X, \xi_{a}) = -\frac{1}{2} \alpha_{a} \operatorname{nor}(\underline{f} X) = 0$; a standard argument based on (4.8) leads to the proof.

To prove iv) one uses D h = 0, (2.15) and f-invariance, i.e. one has $h((D_X \xi_a, Y) = 0)$. Thus $\alpha_a h(\underline{f} X, Y) = 0$, by (2.14). For some $\alpha_a = 0$ one uses (4.7). Finally, apply once more \underline{f} and notice that η'_a vanish on normal vectors. Thus h = 0.

REMARK

Let \mathscr{F} be the canonical foliation of H^{2n+s} . Let N be a framed C.R. submanifold of H^{2n+s} , as above. Then $\mathscr{D}^{\perp} \subseteq \mathscr{F}$, i.e. the totally-real foliation of N (regarded as a C.R. submanifold, s even) is normal to the characteristic field $2\sum_{i=1}^{s/2} (\xi_i - \xi_{i*})$ of H^{2n+s} . Indeed, since $\xi_s \in \mathscr{D}^{\perp}$, the η_s vanish on \mathscr{D}^{\perp} . Thus $\omega \circ \epsilon^{\perp} = 0$.

5.- THE CHEN CLASS OF A CAUCHY-RIEMANN SUBMANIFOLD.

Let M be a C.R. submanifold of \mathbb{CP}^n . Let $\pi : \mathbb{N} \to \mathbb{M}$ be a \mathbb{T}^{s} -fibration, as in theor. B. Assume s is even. Then N is a C.R.submanifold of \mathbb{H}^{2n+s} and its totally-real distribution is integrable. We shall need the following:

LEMMA

The holomorphic distribution of N is minimal.

Proof.

Note that we may not use lemma 4. in [17] (p.169) since its proof makes essential use of the Kaehler property. Neither could one use corollary 2.3 of [27] (p.291), (although $\mathscr{D}_{N}^{\perp} \subseteq \mathscr{F}$) since $(\mathscr{J}, \mathscr{G})$ fails to be locally conformal Kaehler. Now (2.4) - (2.5), (3.1) lead to:

$$(\underline{\mathbf{D}}_{\mathbf{X}} \mathscr{J}) \mathbf{Y} = \frac{1}{2} \{ [\mathscr{G}(\mathbf{X}, \mathbf{Y}) - \eta_{b}(\mathbf{X}) \eta^{b}(\mathbf{Y})] \boldsymbol{\xi} - [\mathbf{X} - \eta_{b}(\mathbf{X}) \boldsymbol{\xi}^{b}] \eta(\mathbf{Y}) \} - \frac{1}{4} \{ \underline{\mathbf{F}}(\mathbf{X}, \mathbf{Y}) \mathbf{B} + \boldsymbol{\omega}(\mathbf{Y}) \mathbf{f} \mathbf{X} \}$$
(5.1)

where
$$\eta = \sum_{n=1}^{s} \eta_n$$
, $\xi = \eta^{\dagger}$. Let $X \in \mathcal{D}_N$, $Z \in \mathcal{D}_N^{\perp}$. Using (5.1) we have:
 $(Z, \underline{D}_X X) = \mathscr{G}(\mathscr{J}Z, \mathscr{J}\underline{D}_X X) = \mathscr{G}(\mathscr{J}Z, \underline{D}_X \mathscr{J}X) = \mathscr{G}(W_{\mathscr{J}X} X, \mathscr{J}X).$

Thus: $\mathscr{G}(Z, \underline{D}_X X + \underline{D}_{\mathscr{G}X} \mathscr{G} X) = 0$ and \mathscr{D}_N^{\perp} follows to be minimal. Let $p = \dim_{\mathbb{C}} \mathscr{D}$. Let $\{X_A: 1 \leq A \leq 2p\}$ be a real orthonormal frame of \mathscr{D} , where $X_{i+p} = \mathscr{G} X_i$, $1 \leq i \leq p$. Then $\{X_A^H, \xi_a\}$ is an orthonormal frame of \mathscr{D}_N . Let λ^A , $1 \leq A \leq 2p$, be differential 1-forms on N defined by $\lambda^A(X_B) = \delta_B^A$, $\lambda^A(Y) = 0$, for any $Y \in \mathscr{D}_N^{\perp}$. Let $\lambda = = \lambda^1 \wedge ... \wedge \lambda^{2p} \wedge \eta^1 \wedge ... \wedge \eta^s$. Then λ is a globally defined (2p+s)-form on N, as \mathscr{D}_N is orientable. We leave it as an exercise to the reader to follow the ideas in [17] (p.170) and show that since \mathscr{D}_N is minimal and \mathscr{D}_N^{\perp} integrable the (2p+s)-form λ is closed. Thus λ determines a cohomology class $c(N) = [\lambda] \in H^{2p+s}(N; \mathbb{R})$ refered to as the Chen class of N.

To prove theor. B suppose M is a C.R. product, i.e. M is locally a product of a complex submanifold and a totally-real submanifold of \mathbb{CP}^n , see e.g. [28], (p.63). Now C.R. products have an integrable holomorphic distribution and a minimal totally-real distribution. By (2.8), for any tangent vector fields X, Y on \mathbb{CP}^n one has:

$$[X^{H}, Y^{H}] = [X, Y]^{H} - \alpha^{a} \underline{F}(X^{H}, Y^{H}) \xi'. \qquad (5.2)$$

Then (5.2) used for $X = X_A$, $Y = X_B$ leads to $[X_A^H, X_B^H] \in \mathscr{D}_N$. Next, as \mathscr{P}^\perp $X_A^H = 0$ one has

$$[X_{A}^{H}, \xi_{a}] = (\underline{D}_{\xi_{a}} \mathscr{P}^{\perp}) X_{A}^{H} - \mathscr{P}_{A}^{\perp} \underline{D}_{X}^{H} \xi_{a} .$$
 (5.3)

We need the following :

LEMMA

The covariant derivative $(D_X \mathscr{P}^{\perp}) Y = D_X^{\perp} \mathscr{P}^{\perp} Y - \mathscr{P}^{\perp} D_X^{\perp} Y$ of \mathscr{P}^{\perp} is expressed by:

$$(D_X \mathscr{P}^{\perp}) Y = -h (X, \mathscr{P} Y) + f h (X, Y) - \frac{1}{4} \omega (Y) F X$$
(5.4)

for any tangent vector fields X, Y on N. Here $f V = nor(\mathcal{J} V)$ for any cross-section V in $T(N) \rightarrow N$.

Proof. 💊

Let also t V = tan (\mathcal{J} V). Using the Gauss and Weingarten formulae of N in H^{2n+s} one has:

$$(\underline{D}_{X} \mathscr{J})Y = (\underline{D}_{X} \mathscr{P})Y - W_{\mathscr{P}} \bot_{Y} X - th(X, Y) + + (\underline{D}_{X} \mathscr{P} \bot)Y + h(X, \mathscr{P} Y) - f h(X, Y)$$
(5.5)

Let us use (5.1) to substitute in (5.5); a comparisson between the normal components in (5.5) leads to (5.4), Q.E.D.

Now we may use the above lemma to end the proof of the involutivity of \mathscr{D}_{N} . Indeed, by (5.4) and (2.4) our (5.3) turns into:

 $\mathscr{P}^{\perp}[X_{A}^{H},\xi_{a}] = -h(\xi_{a},\mathscr{P}X_{A}^{H}) + fh(\xi_{a},X_{A}^{H}) - \frac{1}{4}\omega(X_{A}^{H})F\xi_{a} + \frac{1}{2}\alpha^{a}\mathscr{P}^{H}\underline{f}X_{A}$ (5.6) and by (2.15) one obtaines $\mathscr{P}^{\perp}[X_{A}^{H},\xi_{a}] = 0.$

The last step is to establish minimality of \mathscr{D}_{N}^{\perp} . Let $q = \dim_{\mathbb{R}} \mathscr{D}_{x}^{\perp}$, $x \in M$.

If $\{E_i: 1 \le i \le q\}$ is an orthonormal frame of \mathcal{D}^{\perp} then (2.8) yields:

$$\ell_{N} \sum_{i=1}^{q} \underline{D}_{E}^{H} \underbrace{E}_{i}^{H} = \{\ell_{i} \sum_{i=i}^{q} \nabla_{E} \underbrace{E}_{i}^{H}\}.$$
(5.7)

But \mathscr{D}^{\perp} is minimal, so the right hand member of (5.7) is zero. Finally, one may follow the ideas in [17], (p.170) to show that since \mathscr{D}_N is integrable and \mathscr{D}_N^{\perp} minimal the (2p+s)-form λ is coclosed. As N is compact, λ is harmonic. Thus $c(N) = [\lambda] \neq 0$, and our theor. B is completely proved.

<u>REFERENCES</u>

- 1 A.BEJANCU, C.R. submanifolds of a Kaehler manifold, I-II, <u>Proc. A.M.S.</u>, <u>69 (1978), 134-142, Trans. A.M.S., 250 (1979)</u>,335-345.
- 2 D.E.BLAIR & B.Y.CHEN, On C.R. submanifolds of Hermitian manifolds, Israel J. Math., 34 (1979), 353-363
- 3 A.ANDREOTTI & C.D.HILL, Complex characteristic coordinates and tangential Cauchy-Riemann equations, <u>Ann. Scuola Norm. Sup. Pisa</u>, <u>26</u> (1972), 299-324.
- 4 D.E.BLAIR, Geometry of manifolds with structural group U(n) x O(s), <u>J.</u> <u>Diff. Geometry. (2)</u> <u>4</u> (1970), 155-167.
- 5 I.MIHAI, C.R. Submanifolds of a framed f-manifold, <u>Stud. Cerc. Mat.</u>, <u>35</u> (1982), 127-136.
- 6 L.ORNEA, Generic C.R. submanifolds of *P*-manifolds, <u>Stud. Cerc. Mat.</u>, <u>36</u> (1984), 135-443.
- 7 K.YANO & M.KON, C.R. submanifolds of Kaehlerian and Sasakian manifolds, Progress in Math., Vol. 30, Birkhäuser, Boston-Bascel-Stuttgart, 1983.
- 8 D.E.BLAIR, On a generalization of the Hopf fibration, <u>An. St. Univ. "Al.</u> <u>I. Cuza", 17</u> (1971), 171-177.
- 9 W.M.BOOTHBY & H.C.WANG, On contact manifolds, <u>Ann. Math., (3) 68</u> (1958), 721-734.
- 10 A.MORIMOTO, On normal almost contact stuctures, <u>J. Math. Soc. Japan, 15</u> (1963), 420-436.
- 11 S.TANNO, On fiberings of some noncompact contact manifolds, <u>Tohoku Math.</u> J., <u>15</u> (1963), 289-297.
- 12 I.VAISMAN, Locally conformal Kaehler manifolds with parallel Lee form, <u>Rendiconti di Matem.</u>, 12 (1979), 263-284.
- 13 H.B. LAWSON, Rigidity theorems in rank-1 symmetric spaces, <u>J. Diff.</u> <u>Geometry</u>, <u>4</u> (1970), 349-357.
- 14 Y.MAEDA, On real hypersurfces of a complex projective space, <u>J.</u> <u>Math. Soc. Japan, 28</u> (1976), 529-540.
- 15 M.OKUMURA, On some real hypersurfaces of a complex projective space, <u>Trans. A.M.S.</u>, 212 (1975), 355-364.
- 16 K.YANO & M.KON, Differential geometry of C.R. submanifolds, Geom. Dedicata, 10 (1981), 369-391.
- 17 B.Y.CHEN, Cohomology of C.R. submanifolds, <u>Ann. Fac. Sci. Toulose</u>, 3 (1981), 167-172.

- 18 S.GOLDBERG & K.YANO, On normal globally framed f-manifolds, <u>Tohoku</u> <u>Math. J., 22</u> (1970), 362-370.
- 19 K.YANO, On a structure defined by a tensor field f of type (1,1) satisfying $f^3 + f = 0$, <u>Tensor</u>, <u>N.S.,14</u> (1963), 99-109.
- 20 H.NAKAGAWA, f-structures induced on submanifolds in spaces, almost Hermitian or almost Kaehlerian, <u>Kodai Math. Sem. Rep., 18</u> (1966), 161-183.
- 21 D.E.BLAIR & G.D.LUDDEN & K.YANO, Differential geometric stuctures on principal toroidal bundles, <u>Trans.A.M.S.</u>, <u>181</u> (1973), 175-184.
- 22 R.S.PALAIS, <u>A global formulation of the Lie theory of transformation</u> groups, Memoirs A.M.S., vol.22, 1957.
- 23 B.O'NEILL, The fundamental equations of a submersion, <u>Michigan Math.</u> J., 13 (1966), 459-469.
- 24 B.Y.CHEN, Geometry of submanifolds, M.Dekker, Inc., New York, 1973.
- 25 S.GOLDBERG, Invariant submanifolds of codimension 2 of framed manifolds, <u>An. St. Univ. "Al. I. Cuza", '17</u> (1971), 157-165.
- 26 P.LIBERMANN, Sur les structures presque complexes et autres structures infinitesimales reguliers, <u>Bull. Soc. Math. France</u>, <u>83</u> (1985), 195-224.
- 27 B.Y.CHEN & P.PICCINNI, The canonical foliations of a locally conformal Kaehler manifold, <u>Ann. Matem. pura appl., (4)</u> CXLI (1985), 289-305.
- 28 A.BEJANCU, <u>Geometry of C.R. submanifolds</u>, D. Reidel Publ. Co., Dordrecht- Boston-Lancaster-Tokyo, 1986.