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ABSTRACT. In the present paper, we define a new class of discrete splines and study

the existence, uniqueness, and convergence properties of discrete quadratic splines

satisfying the Mean Averaging Condition.
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I. INTRODUCTION.

Schoenberg [I] and DeBoor [2] have studied even degree splines whose integral

means between the mesh points agree with the same means of a given function.

Considering a more general condition viz the mean averaging condition (MAC), Sharma

and Tzimbalarlo [3] have studied the existence, uniqueness and convergence of a

quadratic spline satisfying MAC. It is of some interest to mention that Varga [4] has

considered error bounds for spllnes satisfying conditions involving functlonals using

a different approach. The existence, uniqueness and convergence properties of

discrete cubic spllnes satisfying MAC have been studied by Dikshlt and Power [5]. It

may be observed that the approach used by Lyche [6] for defining discrete cubic

splines is not capable of providing the corresponding definition for discrete splines

of degree less than three. In the present paper, we consider certain interpolatory

discrete splines of degree two and study the existence, uniqueness and convergence

properties of such spllnes satisfying MAC.

2. EXISTENCE AND UNIQUENESS.

Let a mesh on [a,b] be defined by P: a Xo< Xl <...< Xn b with x
i xi-I Pi

for i 1,2, n and p mx Pi" The class D(2,P,h) of discrete quadratic splines

for h > 0 is the set of all continuous functions s(x,h) such that for i 1,2,...,n

the restriction s
i

of s(x,h) on [Xi_l, xi] is a polynomial of degree 2 or less and
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Dh{l} si(xi-h) Dh{l} si+l(xi+ h); i 1,2,...,n-I (2.1)

where the central difference operator Dh{l}f(x) (f(x+h)-f(x-h))/2h (see Lyche [7]).

For convenience, we set for each i,

Ai(j ,k) x.]i (x_xi_
xi-

-h) j (xl-x-h)
k

dg, J, k-- 0,I,2

x
I x

I
H
i

dg, F
i

f dg and Ji [xi-I
xl- xi_

+2h,xl-2h].

In the present section, we shall study the following:

PROBLEM 2.1. Let f be a b-a periodic locally integrable function with respect to

nonnegatlve measure dg. We investigate restrictions on g such that there exists a

unique b-a periodic discrete quadratic spline s(x,h) in D(2,P,h) satisfying the MAC:

x
i

f (f(x) s(x,h))dg 0, i 1,2 n. (2.2)

xi-
We shall answer the Problem 2.1 in the following,

THEOREM 2.1. Suppose that the support of the restriction of g over [xi_I, xi] is

included in Ji and its total variation over Ji is positive. Then there exists a

unique discrete periodic quadratic spllne s(x,h) in D(2,P,h) satisfying MAC (2.2).

REMARK. 2.1. In the case in which h O, Theorem 2.1 gives the corresponding

result for continuous quadratic spline interpolation under MAC studied in [3]. It is

also interesting to note that condition (2.2) reduces to some other interpolating

conditions by suitable choice of g(x).

PROOF OF THEOREM 2.1. It is clear that DI}- s(x,h) is linear, hence in the

interval [Xi_l, xl] we may write

(Pi-2h) Dh{l }s(x,h) (x-xi_l -h )M
i

+ (xi-x-h) Mi_ (2.3)

where MifHi(h) Dh{l}s(xl-h,h). Thus, summing (2.3), we have

2(Pi-2h) s(x,h) (x-xi_l-h)2Mi (xi-x-h)2Mi_l+Z(Pi-2h)ci
(2.4)

where c
i

is a constant which has to be determined. Using the continuity of s(x,h), we

get

2(Pi+l-2h) [(Pl-h)i hi_ + 2(pl-2h)c I]

2(Pi-2h [h2Mi+ (Pi+l-h)2Mi + 2(Pi+l-2h)ci+I]. (2.5)
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Since s(x,h) satisfies the Interpolatory condition (2.2), we get from (2.4)

2(pl-2h)F i MiAi(2,0) Mi_lAi(0,2) + 2(pl-2h)ciH i.
(2.6)

Eliminating cl, ci+ between the equations (2.5) (2.6), we get the following system

of equatlons:

(Pi-2h)[di+l(2,0) h 2] Mi+l+[(Pi+l-2h){(Pi-h)
2

di(2,0)

+ (P1-2h) {(Pi+l -h)2-di+l (0’2)}]Hi + (Pi+l -2h) [d
i
(0,2)-h2 ]Mi_l

,
2 Fi(h).

where
,

Fi(h) (Pi-2h) (Pi+l-2h) [Fi+l/Hi+ Fi/Hi] and

di(p,q) Ai(p,q)/Hi
for p,q 0,1,2,; 1,2 n.

In order to prove Theorem 2.1, we shall show that the system of equations (2.7)

has a unique set of solutions. Since the support of the restriction of g over

[Xi_l,Xl] is included in Ji’ we observe that the coefficients of Mi_I, M
i

and Mi+
are all nonnegative by virtue of the hypothesis that the total variation of g

over Ji is positive. Further, the excess of the positive value of the coefficient

of M
i

over the sum of the positive values of the coefficients of Mi_ and Mi+ is

tl(h 2[(Pl- 2h)Rl+ + (Pi+l-2h) Ri] (2.8)

where R
i di(l,l) with h 0. Clearly ti(h) > 0 under the conditions of Theorem

2.1. Thus, the coefficient matrix of the system of equations (2.7) is diagonally

dominant and hence invertible. This completes the proof of Theorem 2.1.

3. ANOTHER INTERPOLATION PROBLEM.

In this section of the paper, we shall answer problem 2.1 with MAC replaced by

the interpolatory condition:

s(xi_ I) + s(xi) f(xi_I) + f(xi) i 1,2 ....... n. (3.1)

It may be mentioned that it is possible to deduce the Interpolatory condition

(3.1) from the MAC (2.2) by a suitable choice of dg. Further, it is easy to see that

the conditions of Theorem 2.1 are not satisfied for the interpolatory condition

(3.1). To answer Problem 2.1 for the interpolatory condition (3.1), we use (3.1) in

(2.4) to get
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2(Pi-2h) (fi-l+fi) (P+2h2-2Pl h)(MI-Mi-l)+4cl (Pi-2h) (3.2)

where fi f(xi) for all i. Eliminating

we have the following system of equations:

from the equations (3.2) and (2.5),

PiMi_l + (Pi+Pi+1)Mi + Pi+lMi+l 2(fi+l-fi_l). (3.3)

Clearly the system of equations (3.3) is not diagonally dominant. However, we

may rewrite (3.3) in the following form,

pi(Mi_l+Mi) 2(fl-fi_l)+ Pi+l(Mi+Mi+l
1,2, n.

2(fi+l-fi) 0

(3.4)

Assuming that n is odd and s,f are b-a periodic, we get from (3.4) (of. Sharma and

Tzimbalario [3])

n-I f f

Mi_ [ (_1)J _i+j+1

jffi0 PI+J+I
(3.5)

Thus, we have proved the following:

THEOREM 3.1. For every b-a periodic function f, there exists a unique discrete

periodic quadratic spline s(x,h) in D(2,P,h) satisfying the interpolatory condition

(3.1) if and only if n is odd.

4. ERROR BOUNDS.

In this section, we shall estimate the error function e(x) s(x,h) f(x) for

the spllne interpolant of Theorem 2.1. over the discrete interval [a,b]h which is the

intersection of [a,b] with

Rha {a + Jh: J is an integer a is real }.

For a function f defined over [a,b]h, w(f,p) denotes the discrete modulus of

continuity. Throughout this section for convenience, we assume that P is a uniform

mesh so that x
i xi_ p and

g(x + p)-g(x) K (a constant) (4.1)

We first begin with the following result, (see Lyche [7])

{i
i for some h > 0 andLEMMA 4.1. If {xi}iffi0 }i=0 [a b]h

n m
{al}i=0, {bl}i=0 are given sequences of nonnegative real numbers such that

n m

i- ai iD bi’ then for any real valued function f defined on the discrete

interval [a,b]h, we have
n

i-o ’i [%’x
m

]f -ifZ0 bl[O’%]fl W(Dh{l}f,b-a-h) X ai.
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We now proceed to estimate the error bounds at the points xl-h for all i. Observing

that, Ai(j,k) A(j,k) and H
i

H for uniform mesh, we shall prove the following,

LEMMA 4.2. Let s(x,h) be the interpolating spllne of Theorem 2.1. If g is a step

function with Jumps of only at the points of [a,b]h, then

where t(h) is some positive function of h and Jl(A,h) is some positive function of

A(J,k) and h.

PROOF OF LEMMA 4.2. It may be observed that the system of equations (2.7) may be

written as
,

A(h) M(h) 2 F (h) (4.3)

where A(h) is the coefficient matrix and M(h) and F(h) are single column matrices

(Mi(h)) and (Fi(h)) respectively. Further, it may be seen that the row max norm

-I
of A (h) is

where t(h) max {t
i

(h)}. From (4.3), it follows that
i ,
A(h) (Sl}e(xi-h)) 2 Fl(h) A(h) D1}f(xl-h). (4.5)

Using the fact that g is a step function with Jumps of at the points of [a,b]h, we

wish to apply Lemma 4.1 to estimate the right hand side of (4.5). For this, we notice

that Dl}f(xl-h) [xl-2h,xl]f and that the sum of the coefficients of the

Dl}f(xi-h)’s- on the right hand side of (4.5) is

Xi+l
[-2 p(p-2h)2/H] ] dg

x
i

whereas Xi+l
2Fi(h) [-2p(p-2h)2/H] [x,x + p]f dg.

x
i

Thus, rearranging the terms suitably and then "applylng Lemma 4.1, we see that the row

max norm of the matrix on the right hand side of (4.5) does not exceed

P Jl(A’h) W(Dh{l}f, p)

where Jl(A,h)is some positive function of A(J,k) and h. (4.2) now follows when we

appeal to (4.4). We are now set to prove the following:
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THEOREM 4.1. Let s(x,h) be the interpolating spline of Theorem 2.1. If g is a

step function with jumps of only at the points of [a,b]h, then

where J(A,h) is some positive function of A(J,k) and h.

PROOF OF THEOREM 4.1. In order to prove Theorem 4.1, we respectively replace

Mi(h) and D1}s(x,h) by Dl}e(xl-h) and D }e(x) in equation (2.3). Now adjusting

suitably the additional terms and using Lemma 4.1, we see that

Combining the estimate (4.2) with (4.7), we complete the proof of Theorem 4.1

with J(A,h) [1+ pt(h) Jl(A’h)]"

ACKNOWLEDGEMENTS. The author would like to express his sincere thanks to Professor

H.P. Dikshit for some helpful discussions.

REFERENCES

I. SCHOENBERG, I.J., "Splines and Histograms" Spllnes and Approximation Theory, ISNM,
21, 277-327, Birkhuser-Verlag, Besel, 1973.

2. DE BOOR, C., Appendix to Spllnes and Histograms, ISNM 21, 329-358,
Birkhauser-Verlag, Besel, 1973.

3. SHARMA, A. and TZIMBALARIO, J., Quadratic Spllnes, Jour. Approx. Theory, 19
(1977), 186-193.

4. VARGA, R.S., Error Bounds for Spltne Interpolation in Approximation with
Special Emphasis on Spline Functions (I.J. Schoenberg, Ed.), 367-388,
Academic Press, New York, 1969.

5. DIKSHIT, H.P. and POWER, P., Area Matching Interpolation by Discrete Cubic
Splines, Approximation Theory and Applications Proc. Int. Conf. St. John’s
Hew Foundland (1984), 35-45.

6. LYCHE, T., Discrete Cubic Spline Interpolation, BIT, 16(1976), 281-290.

7. LYCHE, T., Discrete Cubic Spline Interpolation, Report, RRI5, University of
Oslo, 1975.


