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ABSTRACT. Coefficient domains for functions whose derivative has positive real part

in the interior of an ellipse are given in this paper.
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INTRODUCTION.

Let f(z) be regular and satisfy the condition

Re f’(z) ) 0 (I.I)

in a domain D. Then it is wellknown (see [I, p. 582], [2]) that f(z) is univalent in

D. Let D be the interior of a fixed ellipse

E {z cosh(s + IT), 0 T < 2, s tanh-l(b/a), a > b > 0} wlth fool +/-I. Let
o o o

r a + b be the sum of the seml-axes of the ellipse E and set z cosh rl where
o o

n s + iT and 0 < s < s Then we see from the operator lz- ln that (I.I)
o

becomes

Rez/-I f’(z) ) 0 (1.2)

for z in Int(E ).
o

In this note we shall study coefficient domains for functions which are regular

and satisfy (1.2) in Int(E ). In connection with this problem see [3, Problem
o

6.54], [4, Problem 7.2], [5], [6], and [7] and [8, p.141].
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THEOREM. Let f(z) anTn(Z) be regular and satisfy (1.2) in Int(E ). Then

n=
0

for n we have the sharp inequalities

,,lanl 2/n slnh nSo, (I.3)

2 2 2 2 2
a sinh ns + cosh ns 4/n (1.4)
n o n o

The inequality (1.4) shows that the coefficients a lle in ellipses with centre

at the origin and seml-axes 4/n(r2 +/- r:n) where n-1,2,3 .....
PROOF OF THE THEOREH. We see from (1.2), setting z cosh(s + iT), s log r

o o o

and a a + I that
n n n

Re[l+-I f’(z)] + . n(a sinh ns cos uT- 8 cosh ns sin nT)
n o n o

n=l

where Re[l + /f-1 f’(z)] > 0 in Int(Z ).
o

Since this is a Fourier series for fixed s we then see that
o

21[
-[0 Re[l+/z-1 f’(z)] dT

21[

fo Re[l+z--1 f’(z)] cos nT n1[lanSlnh nSo, (1.6)

f21[Re[1+-I f’(z)] sin nT n1[i cosh ns
o n o

(1.7)

Using (1.5), (1.6), and (1.7) we obtain

[an[ Jan+
sinh n(s + iT) Re[l+z/-I f’(z)]

f(1[ o dT
slnh ns cosh ns

o o

21[

nW sin’h ’ns’ fo Re[l+z-I f’ (z) dT
o

2/n slnh us
o

since Islnh n(s + iT) 4 cosh ns This is (I,3).
o o
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We also see form (1.5), (1.6) and (1.7) that

lansinh nSo + Is. =oh nol li S" Re[ I+z-I f’ (z)]eniTdT

This gives
2/n.

2 B2 2
a sinh2ns + cosh ns 4/n

2
n o n o

as required in (1.4) and the proof of the theorem is complete.

Finally we see from [9, Theorems 2 and 6] that

where cosh(s + iT’), z cosh(s + iT), 0 < s < s 0 < T’ < 2 and
o o

0 T < 2, plays the role of the extermal function in this case.

REMARK. Normalizing in the sense of [3, Remark 2] we obtain the analogous results

in [2, Theorem I].
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