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ABSTRACT. It is proved in [1] & [2] that a set bounded in an inductive limit E = indlimE, of
Fréchet spaces is also bounded in some E, iff E is fast complete. In the case of arbitrary locally
convex spaces E, every bounded set in a fast complete indltmE, is quasi-bounded in some E,,
though it may not be bounded or even contained in any E,. Every bounded set is quasi-bounded.
In a Fréchet space every quasi-bounded set is also bounded.
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Let L be a vector space and B C L. The absolutely convex hull of B is denoted by abcoB.
The linear hull of B, with the topology generated by the gauge of abcoB, is denoted by Ep. The
set B is called Banach disk if it is absolutely convex, Ep is a Banach space, and B is closed in
Epg. A locally convex space F is called fast complete if every set bounded in F is contained in a
Banach disk. For A C F, the closure of A in F is denoted by cfpA.

Let Ey C E; C --- be a sequence of Hausdorff locally convex spaces with the identity maps
id: E, —» Epy1,n=1,2,---, continuous and the inductive limit E = tndlimE, Hausdorff. Then
E is called regular if every set bounded in E is also bounded in some E,. It is shown in (1] & (2]
that if all spaces E, are Fréchet then E is regular iff E is fast complete. This result can not be

extended to inductive limits of arbitrary locally convex spaces.

We introduce the notion of a quasi-bounded set and show that if E is fast complete then every

set bounded in E is quasi-bounded in some E,,, though it may not be bounded or even contained
in any E,,.

DEFINITION. Let F be a Hausdorff locally convex space. A set B, not necessarily contained
in F, is alled quasi-bounded (further we write g-bounded) in F if:
(a) Ep is Hausdorff,

(b) for any O-neighborhood U in F, the set ¢fg, (U N Ep) absorbs B.
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PROPOSITION 1. In the above definition the property (4) could be replaced by:

(bb) for any O-neighborhood U in F, the set ¢fg, (U N B) absorbs B.

PROOF. Clearly (bb) = (b). Let a set B satisfy (b) and U be a O—neighborhood in F.
Without the loss of generality we may assume both B and U to be absolutely convex and B C
clg, (U N Eg).

Takeb € B, 8 > 0. Then (b+BB)N(UNEg) = (b+BB)NU # Bor b € U+ BB which implies
BCU+fB. Putb=u+ fv,whereu € U,vE€ B. Thenu=b—fveE B+ B = (1+p)B and
veUN(1+B)B C (1+8)UN(1+B)B = (1+B)(UNB). Hence b =u+pPv € (1+6)(UNB)+BB
and B C N{(1 + B)(U N B) + BB; B > 0} = clg, (U N B).

PROPOSITION 2. Let Q(F) be the family of all g-bounded sets in a Hausdorff locally convex
space F. Then:

1. B bounded in F = B € Q(F),

2. B€ Q(F) = abcoB € Q(F),

3. BE Q(F) = clg,B € Q(F),

4. BEQ(F)&A C B=> A€ Q(F),

5. BE Q(F)&B C F => ¢trB € Q(F),

6. B € Q(F)&A a set bounded in F => AUB € Q(F)&A + B € Q(F),

7. B € Q(F)&A the closed unit ball in the completion of Eg => A € Q(F).

PROOF. The statements 1,2, and 3, are obvious.

4. Since A C B, the topology of E, is finer than that of Ep and E, is Hausdorff.

Take a 0—neighborhood U in F. We may assume that all A, B, and U, are absolutely convex
and B C clg, (U N B). Take a > 1 and assume there exists £ € A \ aclg,(U N A). Then

z ¢ a(UNA), 32 ¢ U and 1z ¢ UnN B. On the other hand, 1z € A C B C clg,(U N B).
Hence there exists a real f € E} such that f(z) = « and UN B C f7![-1,1]. But then also

elg,(UNB) C f~![-1,1]. Sincez€e AC BC ¢tg, (UNB), we have f(z) € [-1, 1}, a contradiction
with f(z) = a.

5. Let B € Q(F), B C F, B = abcoB, and D = c{rB. By statement 4, it is sufficient to prove
D € Q(F). Take z € Ep, z # 0. Since Ep is Hausdorff, there exists § > 0 such that z & 25B.
Take a real f € F' for which f(z) = 2 and B C f~![-1,1]. Then also fD C f7Y-1,1] and
z ¢ BB which implies that Ep is Hausdorff.

To prove (b) take an absolutely convex 0—neighborhood U in F for which B C clgg(U N Eg).
Since the toplogy of Ep is finer than that of Ep, we have clg, (U N Ep) C clg,(U N Ep) C
¢le,(UN Ep). For z € D and B > O, there exists y € B such that z—y € fU and z =
z—y+y€B(UNEp)+ B C Pele,(UN Ep)+clg, (UN Ep) C Belp,(UNEp) +cle,(UNEp) =
(14 B)ete, (U N Ep). Hence D C N{(1 + B)ele,(U N Ep); 8 > 0} = elg, (U N Ep).

6. The set B is contained in the completion of the normed space Epnr whose topology is
stronger than that of Esy(pnr). Hence both sets A and B are contained in the completion of

EA4(BnF), i-e., AU B and A + B make sense as subsets of a vector space.
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Next assume both A and B to be absolutely convex. To prove that E4p is Hausdorff, take
zo € EayB, 2o # 0. If 2o € Ep, then z¢ & BB for some § > 0. If z, ¢ Ep, then zo € BB for the
same 8 > 0. Let a real f € F' be such that f(z,) = 8 and B € f~![-1,1]. Put U = f}[-1,1].
Since U absorbs A, we have A C aU for some a > 0. If A € (0, I‘:’E) and z € A(A + B), then
| f(z) |< Aa+ A < B while f(zo) = 8. Hence zo & A(A + B).

The space E,p is also Hausdorff since i1d : E4up — E1+p is continuous.

Let U be a 0—neighborhood in F. Take a, < 0 such that A C aU and B C fBclg,(U N Ep).
Then A C aUNE, C aclg, (UNE,4) and A+B C aclg,(UNEL)+Pcleg,(UNEp) C aclg,, ,(UN
Ea+p) + Bele, (U N Earp) = (@ + B)ele,,5(U N Eass).

Similarly, AU B C maz(a,f) - cle, ,(U N Eaup)-

7. The Banach space E, is Hausdorff. Take an absolutely convex 0—neighborhood U in F and
assume B C clg, (U N Ep). Let a € A. There exists a sequence {dn} C B which is Cauchy in Ep
and converges to a in E4. For every m there exists a sequence {umn} C UNB such that umn — bm
in Ep as n — oco. Choose n,, so that umpn. — bm € —:;B, m =1,2,--- and put @¢n = Umpn.. Then

am € UN B and @, — a in E4 as m — oco. Hence a € clg,(U N B) C clg,(U N A) and
A Cclg,(UNA).

PROPOSITION 3. Let F be a locally convex space and B C F a Banach disk. There B is
g—bounded in F.

PROOF. Take a 0—neighborhood in F. Then B C U{nU N Ep;n = 1,2,---}. By the Category
Argument cflg, (nU N Ep) = nelg, (U N Ep) is a O—neighborhood in Ep for some n. Hence
¢lg,(U N Ep) absorbs B.

EXAMPLE 1. Let F be an infinitely dimensional Banach space, B its closed unit ball, and
H the vector space underlying F equipped with the finest locally convex topology. Since every
set bounded in H is contained in a finite-dimensional subspace, B is not bounded in H.

On the other hand, B C H is a Banach disk and, by Prop. 3, is ¢-bounded in H.

PROPOSITION 4. Let F be a Fréchet space and B C F g—bounded in F. Then B is bounded
in F.

PROOF. We may assume that B is absolutely convex and closed in F. Let Uy D Uy C --- be
a fundamental sequence of 0—neighborhoods in F such that each U, is absolutely convex, closed
in F, and Upyy + Upyy C Uny n=0,1,2,---. It is sufficient to show that Up absorbs B.

For each n, there exists 8, > 0 such that B C Bnclg,(Un N Ep). Put g, = min(n~%,671),
Cn = clgy, (U, N Eg), n = 1,2,---, and take £ € B. There exists o € foUo N Ep such that
z— o € €,B C £,8,C; C C;. Hence there exists z; € U; N Eg such that £ — 2o — z; € €28 C
€28,C; C Cy, etc. By the induction, there exists z,, € U, N Ep such that z— (zo+z1+: -+ +2n) €
€n+1B C €n418n+1Cn+1 C Cny1. The sequence z — (2o + 1 ++++ + Zn), n = 0,1,2,- -+, converges
to0in Ep. Hence £ =zg+ 21 + -+ C BolUo + Uy + Uz + - -+ C folUsp + Up and B C (Bo + 1)Us.

THEOREM. Let E; C E; C --- be a sequence of locally convex spaces, with identity maps
En — Epy1,n = 1,2,---, continuous and E = indlimE, Hausdorff. Let B C E be a Banach
disk. Then B is g—bounded in some E,,.
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PROOF. Put for brevity B, = BN E,, n = 1,2,---. We first prove that B = clg, By, for some
n. By the Category Argument there exists n such that cfg, B, absorbs B. Hence B C Aelg, B,
for some A > 0. Take b € B and f > a > 1. There is a sequence by € ABn, b = 1,2,---, such
that by — b in Eg. If by & BB, for infinitely many indices k, then b & aB,, a contradiction.
Thus we may assume b, € (1 + %)B,l for each k. This implies ¢; = ;%bg € By, ¢ — bin Eg and
b € clg,Bn. Since B is closed in Ep, we have B D c¢lg, By and B = clg, B,.

Next we show that there exists m > n such that B, is g—bounded in E,. Assume the
contrary. Then for every k > n, there exists an absolutely convex 0—neighborhood U; in E}
such that cfg, (Us N By) does not absorb B,. Since clg, (U N B)) = Eg, Nclg, (U N By) =
Eg, N cle, (Us N B), the set Vi = cfg, (U N B) also does not absorb B.

Paut for brevity W, = cfg, Bx, k > n. The spaces Ev, and Ew,, k > n, are all Banach and the
identity maps: Ey, — Ew,, k > n are all continuous, hence the map id : Ew,, — U{Ev,;k > n}is
closed. By (3; Cor.IV.6.5] there exists m > n such that id : Ew, — Ey,, is continuous. But then
V. absorbs W,, = B, a contradiction.

Since m > n, we also have B = cfg, B,,. By Prop. 2, #7, B is g—bounded in Ep.

EXAMPLE 2. Let F, B, and H, be the same as in Example 1. For each n, put E, = F* x HN,
where N = {1,2,3,---}. Then E = indlimE, = FV is fast complete, the set BY is bounded in
E, but not bounded in any E,. By Example 1, BY is g—bounded in every E,, n € N.

Theorem 5 in [2] reads: Let E be an inductive limit of Fréchet spaces E,. Then E is regular
iff E is fast complete. We show that this result follows from the above theorem.

To prove it, we first observe that in any inductive limitvE = indlimE,. any set bounded in
some E, is bounded in E. Assume all spaces E, to be Fréchet and E fast complete. Take a set
B bounded in E. Since E is fast complete, we may assume that B is a Banach disk. By our
Theorem there exists m such that B = cfg, Bm and Bn is g—bounded in E,,. By Prop. 4, B, is
bounded in E,,. It remains to show that B,, = B.

Take 7, € B and a sequence {z}} C B, such that z; — zo in Ep. Since B is bounded in E,
the topology of Ep is stronger than that of E and z, — zo in E.

The topology of Ep,_, is inherited from the superspace Eg. Thus {z;} is Cauchy in Ep_. Now,
B,, is bounded in E,, hence the toplogy of Ep_ is stronger than that of E,,. This implies that

{z)} is also Cauchy in the Fréchet space E,, and as such it converges in E,, to some yo € Epn.
But then z; — yo also in E.

Since E is Hausdorff, we have zo = yo € BN E;n = Bpy.
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