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ABSTRACT. We determine all measurable functions I,G,L: [O,1]
satisfying the functional equation

n m n m n m

I(Piqj) -- ---- G(Pi)I(qj) + -- --- L(qj)I(Pi)
i=I 9=I i=1 j=l i=1 9=I

for P e Fn, Q e Fm and for a fixed pair (n,m), n > 3, m > 3, where

G(O) L(O) O and G(1) L(1) I. This functional equation has

interesting applications in information theory.
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INTRODUCTION.
k

Let F
k

{P (pl,...,pk): Pi > O, ---Pi k > 2.
i=1

We say that an information measure I
k F k R, k > 2 is

(n,m)-weighted additive (n,m e q) if there exist weight functions

Gk,Lk F
k

R k > 2 such that

Inm(P.Q) Gn(P)Im(Q + In(P)Lm(Q) P e F Q e F
n m (1.1)

where as usual P-Q (plql ,piqj,...,pnqm) e Fnm. If in addition

Ik, Gk, Lk have the sum property with generating functions

I,G,L [O,1] R, that is
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k k k
Ik(P) I(Pi Sk(P) S(Pi) Lk(P) --- L(Pi)

i=I i=I i=I
(I .2)

then equation (I .1) goes over into the functional equation

n m n m n m

P e Fn Q e Fm. This functional equation (1.3) is of interest since

the special cases

and

G(p) p L(p) p + II(p) I e I (1.4)

G(p) p L(p) p e,8 e I (1.5)

play important roles in the characterization of the entropies of

degree a (Losonczi, [I)

f
aHk(a,1) (p) (21 a 1)-I (Pi Pi a #

a i=1Ik(P) k

Hk(P) --- Pi log Pi a
i=I

and degree (,8) (Sharma and Taneja, [2])
k(, 6 I- 21-6)-I BHk (P) (2 --- (Pi Pi 8

(e,B) (p) i=I
Ik k

2a-I a
Hk(P) Pi log Pi e 8

i=1
respectively. Here we follow the conventions

log log2 O.log O O and oa O a e I. (1.8)

The aim of this paper is to determine all measurable triples

(I,G,L) satisfying. (1.3) for a fixed pair (n,m), n > 3, m > 3

where because of the known results and the convention (I .8)

PeF
k (1.6)

PeFk, (I .7)

we assume

G(O) L(O) O G(1) L(1) I. (1 .9)

Thus we determine not only all measurable functions I of (I k) (see

(I .2)) but also all possible choices for G and L in (I .3). Therefore

the results due to Kannappan [3-5], Losonczi [1], Sharma and Taneja

[2,6] are special cases of our main result. Moreover, if we assume

that I is not constant and that G and L are continuous then we can

interpret our result in the form that, without loss of generality,

we may assume that G and L in (I .3) are continuous, non zero multi-

plicative functions, that is they are non zero continuous solutions

of the functional equation

M(p-q) M(p) -M(q) p,q e [O,I] (1.10)

2. MAIN RESULTS.

We make use of the following well known result (Kannappan, [5]).
LEMMA 1. Let n 3 be a fixed integer and let F [O,1]

be a measurable function satisfying
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n--- F(Pi) O
i=I

for all P e F Then there exists a constant a such that
n

F(p) a(1 np) p e [O,I]
Now we are ready to prove our main result which is an

extension of the results, mentioned above.

THEOREM 2. Let I,G,L [O, lJ R be measurable and let I be

non constant. Then I,G,L satisfy (1.9) and (1.3) for a fixed pair

(n,m), n 3, m 3 if, and only if they are of one of the following

forms

I(p) a(pA pB)
G(p) (I b)pA + bp

B L(p) bpA + (1 b)pB A B (2.1)

I(p) apAlog p

G(p) pA(I + blog p) L(p) pA(1 blog p) A (2.2)

I(p) I(O) + (mn m n)I(O)p + dplog p, G(p) L(p) p, (2.3)

I(I) O G(1) L(1)

I(p) apA G(p) (1 b)pA L(p) bpA p e [O,I) (2.4)

I(p) a#sin(clogp) G(p) pA[cos(clog p) + bsin(clog p)]
L(p) pA[cos(clog p) bsin(clog p)] (2.5)

Here A,B,a,b,c,d are constants and we follow the conventions

Oa.cos(log O) O Oa. sin(log O) O a e .
PROOF. Obviously, the solutions (I,G,L) given by (2.1) to

(2.5) satisfy (1.9) and (1.3) To prove the converse let us introduce

the function I’ [O,I] R defined by

I’(p) I(p) I(O) (I(1) I(O))p p e [O,1]. (2.6)

It is clear that I’ fulfills

I’ (O) I’ (1) O. (2.7)

We now show that the triple (I’,G,L) also satisfies (1.3). To see

this let us put P (1,O,O,...,O) e F and Q (1,O,O,...,O) e F
n m

into (1.3) Using (1.9) we arrive at

I(I) + (nm- 1)I(O) I(I) + (m- I)I(O) + I(I) + (n- )I(O)

or

I(I) I(O) (mn m n)I(O). (2.8)

Thus I’ can also be written in the form

I’ (p) I(p) I(O) (mn m n)I(O)p. (2.9)

Substituting P e F Q (1,O,O,...,O) e F and P (1,O,O,...,O)EFn m n
Q e F separately into (1 3) we getm

n

G(Pi) (I(1) + (m- 1)I(O)) (nm- n) I(O) (2.10)
i=1

and
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m--- L(qj)(I(I) + (n I)I(O)) (nm m)I(O) (2.11)
j=1

or, using (2.8)

n
(I ----- G(Pi))(nm n) I(O) O (2.12)

3=I
and

m
(1 L(qj))(nm- m) I(O) O (2.13)

j=l

respectively.

After these preparations we can see immediately that I’,G,L

satisfy

n m n m n m--- -- I’ (piqj) G(Pi)I’ (qj) + --- L(qj)I’ (pi) (2.14)
i=I 3=I i=I i=I 3=I

for all P e F Q e Fm Putting I’, given by (2 6) into (2 14) and
n

using (1.3) and (2.8), we see that (2.14) is equivalent to

n m
(1 G(Pi)) (nm n)I(O) + (1 --- L(qj))(nm m)I(O) O. (2.15)

i=I j=1

But (2.15) is indeed valid because of (2.12) and (2.13).

In a further step we derive a functional equation for I’, G

and L in which no sums will occur. Setting

F(p,q) I’ (p-q) G(p)I’ (q) L(q)I’ (p) p,q [O,1] (2.16)

we get from (2.14)
n m.= F(Pi’qj)= O’ P E F n’Q E Fm-

Since by hypothesis F [O,1] 2 R is measurable in each variable

we get from Lemma in Kannappan [3] (This Lemma is an application

of the above Lemma that F can be represented in the form

F(p,q) F(p,O) (I mq) + F(O,q) (I np)

F(O,O) (1 mq) (1 np) (2.17)

Thus (2.16) and (2.17) imply

I’ (p’q) G(p)I’ (q) + L(q)I’ (p) p,q e [O,1] (2.18)

since (2.17), (1.9) and (2.7) yield F(p,O) F(O,q) F(O,O) O.

Because of I’(O) G(O) L(O) O it is enough to solve (2.18) for

all p,q e (O,13. Complex-valued functional equations of this type

were intensively studied by Vincze [7-93. From these results we get

the solutions of (2.18) for p,q e (O,1] (Ebanks, [10]) which have

one of the following forms
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I’ (p) a.M(p) .log p,

G(p) M(p) (1 + b.log p) L(p) M(p) (I b.log p) (2.19)

I’ (p) a(M (p) M2(p)),
G(p) (I b)M1(p) + bM2(p) L(p) bM1(p) + (1 b)M2(P) (2.20)

I’ (p) aM(p)sin(clog p) G(p) M(p) [cos (clog p) + bsin(clog p)]

L(p) M(p)cos(clog p) bsin(clog p)]. (2.21)

Here a,b,c are constants and M, MI, M2: (O,1] R are measurable

multiplicative functions. Let us remark that the measurable

solutions of (1.10) for p,q e (O,13 are either

M O or (2.22)

M(p) pA A e or (2.23)

M(1) M(p) O for p e (O,1). (2.24)

Since I has the form

I(p) I’(p) + I(O) + (nm- n- m)I(O)p p e [O,1] (2.25)

(see (2.6) (2.8)) we can derive the solutions (I,G,L) of (1.9) and

(1.3) from (2.19) to (2.24). Let us first consider the case that

n m- (S(Pi) pi O and (L(qj) qj) O (2.26)
i=I 3=I

for all P e Fn, Q Fm" Then Lemma implies that

G(p) rp + s L(p) r’p + s’ p e [O,1]
where r,r’,s,s’ are constants. Because of (1.9) we arrive at

G(p) L(p) p p [O,1].
This is only possible if either

b O M(p) p in (2.19)

or if

b MI(p) M2(p) p in (2.20).

In both cases we get the solution (2.3). Now we assume that

n---- (G(Pi) pi O for some P e F or
i=I n

m

(L(qj) qj) O for some Q e F
3=

m"

Then (2.12) and (2.13) imply that I(O) O so that in all cases where

G(p) p or L(p) # p
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we get that I is equal to I’ and thus I is not dependent upon n and m
(see (2.25)). Using G(1) L(1) and the hypothesis that I is not
constant we obtain from (2.19) to (2.24) the remaining solutions

(2.1), (2.2), (2.4) and (2.5) Thus the Theorem is proven.
It is clear that we can obtain from Theorem 2 some new

characterization theorems for information measures. For instance, we
remark that the functions G and L given by (2.4) or (2.5) cannot be

continuous simultaneously. Thus we get the following extension of
results in Kannappan [3,4], Sharma and Taneja [2,6].

COROLLARY 3. If in addition to the hypotheses of Theorem 2,
G and L are continuous then the only solutions (I,G,L) of (1.9) and

(1.3) are given by (2.1), (2.2) and (2.3).

Corollary 3 implies immediately the following characterization

theorem

Let Ik be an (n,m)-weighted additive information measure where

Ik, Gk, Lk have the sum property with continuous generating functions

I(O) (0) (0) 0 (1)-- g(1) and I( -then Ik(P) tt ,B)(p) or Ik(P) Ilk(p) P e F
k. Here ,B,C are

real constants with A B.

Finally we give two interpretations of our result. If we put
b O into (2.1), (2.2) and (2.3) then we get with unchanged I(p)

G(p) pA B B pA AL(p) p P pA + I(p) + p A @ B

G(p) pA L(p) pA A

G(p) p L(p) p,

respectively. Thus we may consider Corollary 3 as a justification

for the fact that in the literature only two special forms of G and

L were considered, namely (1.4) and (1.5).

On the other hand, the condition b O in (2.1) and (2.2) im-

plies that in Corollary 3 we may assume without loss of generality

that G and L are continuous, non zero multiplicative functions.

This result is analogous to a result concerning recursive measures

of multiplicative type (Aczl and Ng, [113).
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