
Internat. J. Math. & Math. Sci.
VOL. 13 NO. 3 (1990) 453-460

453

AN INTEGRAL INVOLVING THE GENERALIZED ZETA FUNCTION

E. ELIZALDE and A. ROMEO

Dept. of Structure and Constituents of Matter,

Faculty of Physics, University of Barcelona,

Diagonal 67, 080e8 Barcelona.

(Received February 21, 1989 and in revised form May 5, 1989)

ABSTRACT. A general value for f dt log P(t), for a, b positive reals, is derived in terms

of the Hurwitz ( function. That expression is checked for a previously known special

integral, and the case where a is a positive integer and b is half an odd integer is con-

sidered. The result finds application in calculating the numerical value of the derivative

of the Riemann zeta function at the point -1, a quantity that arises in the evaluation of

determinants of Laplacians on compact Riemann surfaces.
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1 INTRODUCTION.

The geometry of the Laplacian operator on compact Riemann surfaces has been
object of renewed interest in the context of string theory path integrals for the closed
bosonic Polyakov string in the critical dimension d 26. In that framework, sums over

multiloop amplitudes lead to physical quantities depending on the determinants of these
laplacians.

D’Hoker and Phong [1,2] realized that the physically interesting determinants
admit relatively simple expressions in terms of Selberg zeta functions. Let M be a

Riemann surface with genus g > 2. If A are the Laplacians acting on tensors of rank
4-n on this surface, their determinants can be calculated by applying the zeta function



454 E. ELIZALDE AND A. ROMEO

method, which establishes

Det’/k exp(- ’(0)), (I.i)

where ( are the associated operator zeta functions, the prime on Det means deletion

of the zero mode, and the other means derivative with respect to s. For the sake of

clarity, let us focus on the case n 0, corresponding to the Laplacian acting on scalar

functions. It turns out that the associated zeta function can be split into two pieces

with

0() 0() + 0()

g- 1 /.o() ,/;r() h / g_(/2). (1.3)

On the other hd M c be identified with H/F, the action of some Fuchsian

group F on the upper hMf-ple H {z x + iy y > 0} endowed with the Poinc6

metric ds y-=(dz +dye). Going one step further, D’Hoker and Phong [2] have shown

that, introducing the Selberg zeta function

z() H H(1 e-’+’), (1.4)
prim. p=0

where the first product runs over the interconjugate primitive elements ? of F and l(v)

e the lengths of the corresponding geodesics meured with the Poinc metric (see
McKe [3]) one gets

’ ’(0) -log z’(1). (.)

That is elt result about which we e not going to me y further cogent

here. We will, inste turn to }. The vMue given by D’Hoker and Phong [2] is

( ’(0) ( 1) -log2 + 4(’(-1) (.)

which coincide wigh formul (24e) in [4], (s)is he memann et function. Then from

(t.1), (1.)a (1.),

’ z’()-’ ’(".

he eoneng congns (-1) a relent contg, so some undersding of ghis

number d igs occurrence in (1.6) would be desireble. While D’Hoker d Phong [2]

put ghe emphi on he derivagion of (1.), we would like to go over the cMculation

leading to (1.6) in some degN1 in the next section, chk the degree of non-trivielity of

gh result, d obtNn possible methemeticM consequences.

In pgicul, we hM1 be led to derive explicit expression (non-existent to our

knowledge in ghe maghemegicM ligerure) for the integrN of log r(t) betwn y two

positive reN, he rulg being ven in Secg. a. In Sect. 4 it will be restricted to the

pticul c theg we need explicigly, d in Secg. a series expsion for ((-1)

which converg very tepidly will be obtned on the bis of this anMysis.
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2 THE ROLE OF THE RIEMANN ZETA FUNCTION IN e).
Let us now turn to expression (1.3). K,,(x) can be put as

r ((x/2)k- (/9_)+)g,(x)
2sinru k!(k- u!) k!(k + u!)

(2.1)
o

Then, one can plug (2.1) into (1.3) d take advantage of the integr representation

for the Hurwitz generalized zeta function

fo tz-le-tq
(z,q) dt

1-e-t’ lez> 1, q>0. (2.2)

As a result, two formal series show up

0(,)(s) g --0 2-+ F(k + s) (2k + 2s 1, 1/2)
i((3/- )) r(,)r( + 1)

r()r( + /e- ) (e + ’ /) ()
k=O

where use h been made of the gala function reduplication formula.

It should be noticed that the terms with k 0 and k in the first summatory

need a bit of care. Taking into account the expansion ((1 + , q) (q) + 0(e) and

evaluating the derivative at s 0 one gets

ds

=0- = 2 k + l(k’ 1/2) (2.4)

Since

(, /) (2"- 1)(), (.)

the series that h ppeared gives rise to expsions of the form (-1) (n) z" Then,
=z n+l

one c recM1 that [5]

ogt -v + (-)"()t", for- < , (e.)

with t F(t + 1) d denoting the Euler-Mcheroni constant. So the expansions in

question c be interpreted

1o r(z + 1)
1 [,+ 7 (2.7)

where a ptiN integration h been peormed. The vMues we need are precisely

and 1/2. or 1, he result is known, d reads f] dt log r() -1 + 1/2log 2.

Differentiating (2.g) d bering in nd the identity (1/2) -7 2 log2, one can

reach the intermediate result

o(> ’(0) -(g- ) [-’(-) + (e(-)- e)og e- e + og

-4 ff/ dt log r(t)], (.8)
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where the integral comes from the series corresponding to z 1/2. As the expression

stands, this is the only unknown term.

In addition, an integral like this one was considered by Steiner [4] in connection

with the evaluation of the Selberg zeta function for a Laplace operator acting on scalars

on a Riemann surface. There the result was given with the aid of the Barnes G function.

A second observation is the following. Had we taken A instead of A0 (see[2]),
after carrying out a similar calculation we would have ended up with f+3/ dt log F(t).

3 INTEGRATION OF log

We will follow a quite simple procedure based on two formulae for partial deriva-

tives of the generalized zeta function given by (2.2), which can also be defined as

1
(s,t) ,

(k + t)"
for Re s > 1, # 0,-1,-2,... (3.1)

k=0

In addition, it admits an analytic continuation that makes it regular for every s, except

for s 1, where it has a simple pole. Derivation of (3.1) with respect to gives.

-ff(s, t) --s(s -i- 1, t). (3.2)

On the other hand, it has been long known (e.9. Erd61yi et al. [5], pg. 26) that the

partial derivative of the Hurwitz zeta function with respect to s at s 0 is related to

Euler’s gamma function by

ss((S,o t)
o=0

log F(t)- log 2r, Re > 0. (3.3)

By partial derivation of (3.2) with respect to s, one is led to

0s0t ((s, t) -((s + 1, t) s (s + 1, t), (3.4)

and, after applying (3.2) again, to

i) 0 sO
0&(’ t) -;(, t) ( + , t), (3.)

which is valid for s # 0, 1. At this point, it is important to notice that for s - 1, and

Re > 0, ((s, t) is an analytic function of s and t, and therefore, the partial derivatives
with respect to s and to commute in this region. Besides, by taking s -1 and

making use of (3.3), we obtain

0 0
Otas(S t) -’(s, t) + log r(t) log 2r. (3.6)

s=-I s=--I

When integrating the above expression with respect to over a positive real interval

(a, b), we get

dtlogF(t)= (-1, t) + ’(-1, t) + log 2r (3.7)
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where ’(-1, t) denotes -7((s t)

Eq. (3.7) is the desired general formula and one of the main results in this

paper. Although, it is valid for a, b > 0, we feel that it can be extended to any pair of

negative reals provided that there is no singularity of the F function between them, i.e.

to any interval containing neither the origin nor negative integers. In the usual integral

handbooks (see e.g. Grhbner and Hofreiter [6]) only the special case b a + n, n 5 N

appears. One can also find a more general result based on the Barnes G function, which

generalizes Euler’s gamma function (see Steiner [4] and references therein) but, to our

knowledge, no result in terms of " hgs been listed.

As a way of testing (3.7), let us check a previously known case, whose result can

be found in several places (e.g. Erddlyi et al. [5] pg. 24), namely,

/-
=0 2

When evaluating this particular integral according to (3.7), we get the differences

(-1, a + n) (-1, a) d ’(-1, a + n) ’(-1, a). For our purpose, we can te

advantage of the identity

(,,a + n) (s, a)- (k + a)-’, (a.9)
k=O

trivially obtained from (3.1). The point of this expression is that, while (3.1) w valid

just for s > 1, the second term on the r.h.s, of (3.9) is finite for any value of s. Besides,

both (s, a+n)d (s, a)adt Mytic contuations to s < 1. Therefore (3.9) m&es
sense for s < 1 we. The same reoning pplies to its derivative with respect to s:

’(,, + ,) ’(,, ) +(+)o( + ), eo, # . (3.0)
o

Since both (3.9) and (a.0) hdd for y s # , they can be taken at s -1, where they

turn out to be

[(-1,a + n) ’(-1, a)- (k + a), (3.1)
k=0

’(--1, a q- n) "(--1, a) q- (k q- a)log(k q- a). (3.12)
k=-0

By taking (a.7) for a + n and plugging the above identities into the r.h.s., we

immediately see that the result is the same as the one given by (a.8)

4 PARTICULAR CASES.

We are interested in the case where the lower limit of integration is a positive

integer and the upper limit is half an odd integer, i.e.

I(m,n) =_ f=++l/=dt log F(t), m e N, n e N*. (4.1)
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A possible way of calculating this would be to replace a with m and b with m + n + 1/2
on the r.h.s, of (3.7) However, there is an alternative method which shows that all the

integrals of the type (4.1) reduce to known quantities plus I(1, 0), i.e. plus an integral

from 1 to 3/2.
By splitting the integration region into two pieces,

I(m,n) fZ+"dt log r(t) + ::+a/dt log r(t), (4.2)

the first intergal can be read from (3.8). As for the second one, it is convenient to make

the obvious variable change u t- m- n + 1 and take advantage of the simple relation

re+n--2

log F(u + m + n 1) ] log(u + k) + log F(u). (4.3)
k=0

Then, the terms in the summatory can be immediately integrated. As a result of all

this, (4.1) becomes

m--1 i re+n--1

I(m,n) klogk + (2kW1)tog(2k+l)
k=l k=l

n(.- I) 1 I
--ran--

2 --:(re+n--I)-- :(m+n)’Iog2--:
+: log 2r + 1/2d log r(u). (4.4)

So, the question of knowing the value of I(m,n) boils down to calculating the

integral from 1 to 3/2, that will be now quickly evaluated. (3.7) tells us that

j’:/dt log r(t) (-1, 3/2) ((-1) + ’(-1, 3/2) ’(-1) + tog 2r, (4.5)

where ((s, 1) (s), being (s) the Riemann zeta function.

From (3.9) and the relation (2.5)it is plain that

(s, 3/2) (2" 1)(s) 2". (4.6)

Derivation of this expression with respect to s yields

:’(s, 3/2) (2" log 2)’(s) + (2" 1)"(s) 2" log 2. (4.7)
Once again, by analytic continuation (4.6) and (4.7) are valid for any s # 1. In partic-

ular, they can be taken at s -1, thus obtaining

and

3

3 1
("(-I, :) :(log 2)((-1) .,(’(-I) : log2.

Plugging them into (4.5), we get

)dtlogF(t) ’(-1) 4 -: + : log2 ((-1)
1

-(1 + log2)+ log 2r,

(4.8)



GENERALIZED ZETA FUNCTION 459

which allows us to write (4.4) as

n--1 re+n--
dt log r(t) k log k + (2k + 1)log(2k + 1)

k=l k=l

(- l)

2) (-)
n+ 1/2+ o. (.)

The emn eta funcgion at he poing -1 is well known,

(-1) -e -Z (.
2 12

(B 1/6 being the second Bernoulli number), bug ghe remble feature of expres-

sion (4.11) is the fct that ’(-1) appes a relevant mathematic constt for the

cMculagion of his fily of informs.
hese results, combined with (2.8), Mlow us to recover (1.6).

5 CALCULATION OF (’(-1).

A numerical value for (’(-1) was given by Steiner [4], pg. 452, namely ’(-1)
_

-0.1655. It was obtained by taking a finite number of terms of the asymptotic expansion

for (’(-1,q) given by Elizalde in [71 (see also Fried [8]). Nevertheless, in the case q

the validity of that approximation seems to be, at first sight, difficult to justify. Here

we will find the value of ’(-1) by means of using the preceding results.

There is at least one alternative way of evaluating the integral on the 1.h.s. of

(4.10). After doing a trivial variable change, making use of the power series (2.6) and

integrating term by term, we get

" , (--i)= (n). (5.1)

Using (4.12), a comparison of (4.10) with (5.1) leads to

1 71 7
log2+ logr+m’(-1)

4 36 2
2 (-I)"
-’2

which provides us with an expression to evaluate ’(-1), since the r.h.s, can be numer-

ically calculated. Eq. (5.2) is another main result in this paper. For the even-n terms,

we have applied the relation

(2.) (-)+’ (2)2(2)t, . z N’, (.a)

where B2, is he 2rnta Bernoulli number. As for the odd-n terms, we have used the

definition of the Pdemann zeta function,

1

k=l
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and approximated (n) with finite sums up to the desired accuracy. The outcome of

doing all that is

(’(-i) -0.16542115..., (5.5)

in good agreement with the value given by Steiner [4]. Notice, moreover, the rapid

convergence of the series in (5.2), which can be numerically checked. In fact, using a

simple Pascal program we have got the stability of the first six figures of (5.5) after

summation of only eleven terms of the series in (5.2).
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