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ABSTRACT. A general value for [0 dtlog I'(t), for a,b positive reals, is derived in terms
of the Hurwitz ¢ function. That expression is checked for a previously known special
integral, and the case where a is a positive integer and b is half an odd integer is con-
sidered. The result finds application in calculating the numerical value of the derivative
of the Riemann zeta function at the point -1, a quantity that arises in the evaluation of

determinants of Laplacians on compact Riemann surfaces.
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1 INTRODUCTION.

The geometry of the Laplacian operator on compact Riemann surfaces has been
object of renewed interest in the context of string theory path integrals for the closed
bosonic Polyakov string in the critical dimension d = 26. In that framework, sums over
multiloop amplitudes lead to physical quantities depending on the determinants of these
laplacians.

D’Hoker and Phong [1,2] realized that the physically interesting determinants
admit relatively simple expressions in terms of Selberg zeta functions. Let M be a
Riemann surface with genus g > 2. If AZ are the Laplacians acting on tensors of rank

=£n on this surface, their determinants can be calculated by applying the zeta function
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method, which establishes
Det’ A7 = exp(—(3 (0)), (1.1)

where ( are the associated operator zeta functions, the prime on Det means deletion
of the zero mode, and the other means derivative with respect to s. For the sake of
clarity, let us focus on the case n = 0, corresponding to the Laplacian acting on scalar

functions. It turns out that the associated zeta function can be split into two pieces

Go(s) = ¢§7(s) + ¢§(s) (12)
with )
—_ 00 s—-1/2

£ = St [ g Kon-s02) (13)

On the other hand M can be identified with H/T', the action of some Fuchsian
group I on the upper half-plane H = {z = z + iy : y > 0} endowed with the Poincaré
metric ds? = y~2%(dz?+dy?). Going one step further, D’Hoker and Phong [2] have shown
that, introducing the Selberg zeta function

2(s)= [ [IQ e o), (1.4)
v prim. p=0
where the first product runs over the interconjugate primitive elements v of I' and I(7)

are the lengths of the corresponding geodesics measured with the Poincaré metric (see
McKean [3]) one gets

¢§7'(0) = —log Z'(1). (1.3)

That is an elegant result about which we are not going to make any further comment

here. We will, instead turn to (ée). The value given by D’Hoker and Phong [2] is

0y =(g-1) (— log 27 + % - 4('(—1)) , (1.6)

which coincides with formula (24a) in [4], {(s) is the Riemann zeta function. Then from
(1.1), (1.2) and (1.5),
Det’ Ao = Z'(1)e=%" '@, (1.7)

The exponent contains (’(—1) as a relevant constant, so some understanding of this
number and its occurrence in (1.6) would be desirable. While D’Hoker and Phong (2]
put the emphasis on the derivation of (1.5), we would like to go over the calculation
leading to (1.6) in some detail in the next section, check the degree of non-triviality of
that result, and obtain possible mathematical consequences.

In particular, we shall be led to derive an explicit expression (non-existent to our
knowledge in the mathematical literature) for the integral of log I'(t) between any two
positive reals, the result being given in Sect. 3. In Sect. 4 it will be restricted to the
particular cases that we need explicitly, and in Sect. 5 a series expansion for {'(—1)

which converges very rapidly will be obtained on the basis of this analysis.
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2 THE ROLE OF THE RIEMANN ZETA FUNCTION IN C((,e).

Let us now turn to expression (1.3). K,(z) can be put as

T &/ (22
K@) = g5am ,;, (k!(k —u)  Kl(k+ 1/!)) ‘ (2.1)

Then, one can plug (2.1) into (1.3) and take advantage of the integral representation
for the Hurwitz generalized zeta function
1 00 2= -1 —tq
C(z,q)—ﬁz—)-/o dt =, Rez>1, ¢>0. (2.2)
As a result, two formal series show up
(‘)(s) - g-—1 ® 27k T(k 4 5)
0 sin(w(3/2 — s)) = T(s)T(k+1)
0 2—2k+2a—2 F(k + 3/2)
s T(o)T(k +5/2 - 5)

where use has been made of the gamma function reduplication formula.

C(2k + 25 —1,1/2)

C2k+2,1/2)|, (2.3)

It should be noticed that the terms with £ = 0 and &£ = 1 in the first summatory
need a bit of care. Taking into account the expansion {(1 +¢,q) =  —1(q) +0(¢), and
evaluating the derivative at s = 0 one gets

d¢d (s)
ds

=0

5 (;)—22(% m((k 1/2)] (2.4)

~(g-1) |2 (2 —1,1/2)

=0
Since
{(s,1/2) = (2° = 1)((s), (2.5)
the series that has appeared gives rise to expansions of the form ';2( 1) rf(-:)l . Then,
one can recall that [5)
logt! = —yt+ Z 1)" " for—1<t<1, (2.6)
n=2

with t! = I'(t 4+ 1) and « denoting the Euler-Mascheroni constant. So the expansions in

question can be interpreted as

Z( nr ((n) = /dtt logt'+—z

n=2

logT'(z + 1) — %/lz dtlog I'(t) + Ez, (2.7)

where a partial integration has been performed. The values we need are precisely z = 1
and z = 1/2. For z = 1, the result is known, and reads [ dtlog I'(t) = —1 + 1/2log 2.
Differentiating (2.5) and bearing in mind the identity %(1/2) = —y — 2log2, one can

reach the intermediate result

¢§'0) = —(g—1) [=2¢"(=1) + (2((~1) — 2)log 2 — 2 + 2log 27
—4 [ dtlogI(t)] , (2.8)
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where the integral comes from the series corresponding to z = 1/2. As the expression
stands, this is the only unknown term.

In addition, an integral like this one was considered by Steiner [4] in connection
with the evaluation of the Selberg zeta function for a Laplace operator acting on scalars
on a Riemann surface. There the result was given with the aid of the Barnes G function.

A second observation is the following. Had we taken A¥ instead of Ag (see[2]),

after carrying out a similar calculation we would have ended up with fi* 312 gy log T'(t).

3 INTEGRATION OF logI'(t).

We will follow a quite simple procedure based on two formule for partial deriva-
tives of the generalized zeta function given by (2.2), which can also be defined as
bad 1
=S ——— -1,-2,... 1
((s,t) Z(k+t)s,forR)es>l,t3£0, 1,-2, (3.1)

k=0

In addition, it admits an analytic continuation that makes it regular for every s, except

for s = 1, where it has a simple pole. Derivation of (3.1) with respect to ¢ gives.
i}
EC(S)t) = _3((3 + l1t)' (32)

On the other hand, it has been long known (e.g. Erdélyi et al. [5], pg. 26) that the
partial derivative of the Hurwitz zeta function with respect to s at s = 0 is related to

Euler’s gamma function by

0 1
g((s,t) T log I'(t) — 3 log2r, Ret > 0. (3.3)

0

By partial derivation of (3.2) with respect to s, one is led to
i 0
@C(S,t) = _((3 + 17t) - 35;((5 + 17t)) (34)
and, after applying (3.2) again, to
ik 19 0
@C(S,t) = _ZEC(S) t) - s-a—s'C(s + 1’t)a (35)

which is valid for s # 0,1. At this point, it is important to notice that for s # 1, and

Ret > 0,((s,t) is an analytic function of s and t, and therefore, the partial derivatives
with respect to s and to ¢t commute in this region. Besides, by taking s = —1 and

making use of (3.3), we obtain

/]
= EC(svt)

i 1
5;3—3( (s,%) +log I(t) — 5 log 2. (3.6)

s=-1 s=-1

When integrating the above expression with respect to ¢ over a positive real interval
(a,b), we get

b t b

[ dtiogT(t) = [((—l,t) +¢(-1,8)+ S log 27r] . 3.7)



GENERALIZED ZETA FUNCTION 457

where {'(—1,t) denotes %C(s,t) L

Eq. (3.7) is the desired general formula and one of the main results in this
paper. Although, it is valid for a,b > 0, we feel that it can be extended to any pair of
negative reals provided that there is no singularity of the I' function between them, i.e.
to any interval containing neither the origin nor negative integers. In the usual integral
handbooks (see e.g. Grobner and Hofreiter [6]) only the special case b=a +n,n € N
appears. One can also find a more general result based on the Barnes G function, which
generalizes Euler’s gamma function (see Steiner [4] and references therein) but, to our
knowledge, no result in terms of ¢ has been listed.

As a way of testing (3.7), let us check a previously known case, whose result can
be found in several places (e.g. Erdélyi et al. [5] pg. 24), namely,

a+n n-1 —
/ dtlogT(t) = 3 (a+k)log(a+k)—na— E(—né—l)- +g log2m,a € R,n € N*. (3.8)
e k=0

When evaluating this particular integral according to (3.7) , we get the differences
¢(-1,a +n) — {(-1,a) and {'(~1,a + n) — ¢’(~1,a). For our purpose, we can take
advantage of the identity

((s,a+n) = C(s,a) = (K +a), (3.9)
k=0

trivially obtained from (3.1). The point of this expression is that, while (3.1) was valid
just for s > 1, the second term on the r.h.s. of (3.9) is finite for any value of s. Besides,

both {(s,a+n) and {(s, @) admit analytic continuations to s < 1. Therefore (3.9) makes
sense for s < 1 as well. The same reasoning applies to its derivative with respect to s:

C(s,a+n)=C"(s,a)+ 'il(k + a)log(k + a), for s#1. (3.10)
k=0

Since both (3.9) and (3.10) hold for any s # 1, they can be taken at s = —1, where they

turn out to be

n—1
C(—l,a+n)=C(—l,a)—z(k+a), (3.11)

k=0
¢(-1,a+n)={'(-1,a) + :i(k + a)log(k + a). (3.12)

By taking (3.7) for b = a + n and plugging the above identities into the r.h.s., we

immediately see that the result is the same as the one given by (3.8) .

4 PARTICULAR CASES.

We are interested in the case where the lower limit of integration is a positive

integer and the upper limit is half an odd integer, i.e.

I(m,n) = [™™*1/24410gT(t), m € N,n € N*. (4.1)
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A possible way of calculating this would be to replace a with m and b with m+n +1/2
on the r.h.s. of (3.7) . However, there is an alternative method which shows that all the
integrals of the type (4.1) reduce to known quantities plus I(1,0), i.e. plus an integral
from 1 to 3/2.

By splitting the integration region into two pieces,
I(m,n) = [M*"dtlog I(t) + fmint'dtlog I(t), (4.2)

the first intergal can be read from (3.8). As for the second one, it is convenient to make
the obvious variable change u =t —m —n + 1 and take advantage of the simple relation

m+4n—2
logP(u+m+n—1)= Y log(u + k) + log I'(u). (4.3)
k=0
Then, the terms in the summatory can be immediately integrated. As a result of all

this, (4.1) becomes

m—1 m+n—-1
I(m,n) = =Y klogk+% ; (2k + 1) log(2k + 1)
k=1 =1
_nr=1) 1
2 2
+% log 27 + Jdulog I(w). (4.4)

1
(m+n—1)—%(m+n)2log2-—§

So, the question of knowing the value of I(m,n) boils down to calculating the
integral from 1 to 3/2, that will be now quickly evaluated. (3.7) tells us that

£dt1ogD(t) = ((~1,3/2) — ¢(=1) + ¢'(=1,3/2) = ('(=1) + ilog 2r,  (45)

where ((s,1) = {(s), being {(s) the Riemann zeta function.
From (3.9) and the relation (2.5) it is plain that

(5,3/2) = (2 = 1)((s) - 2°. (4.6)
Derivation of this expression with respect to s yields

('(5,3/2) = (2" 1og 2)((s) + (2* — 1)¢'(s) — 2’ log 2. (7)
Once again, by analytic continuation (4.6) and (4.7) are valid for any s # 1. In partic-
ular, they can be taken at s = —1, thus obtaining
3 1 1
(1,3 = -Je-1-3 (48)
and
-1.3y= 1 1) - L 1
((-1,3) = 3 (1og2)¢(~1) ~ 5¢/(=1) - 3 log2. (49)

Plugging them into (4.5), we get

/ R
/13 ? dtlog I'(t) —g(’(—l) £ (—g + %logz) ¢(-1)

-%(1 +log2) + :li-log21r, (4.10)
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which allows us to write (4.4) as

L " dlogT(t) = — 3 klogk+ %mjfl(% +1)log(2k +1)
m k=1 =
—m +n)?(1 + log2) + E(%_L)
~3¢1 + (=5 + 3log2) ¢(-1)
(12 +21/21 og2r. (4.11)

The Riemann zeta function at the point -1 is well known,

(1) = _%2 = _% (4.12)

(B2 = 1/6 being the second Bernoulli number), but the remarkable feature of expres-
sion (4.11) is the fact that ¢/(—1) appears as a relevant mathematical constant for the
calculation of this family of integrals.

These results, combined with (2.8), allow us to recover (1.6).

5 CALCULATION OF ({'(-1).

A numerical value for ¢'(—1) was given by Steiner [4], pg. 452, namely {'(-1) ~
—0.1655. It was obtained by taking a finite number of terms of the asymptotic expansion
for ¢'(—1,q) given by Elizalde in [7] (see also Fried (8]). Nevertheless, in the case ¢ =1
the validity of that approximation seems to be, at first sight, difficult to justify. Here
we will find the value of ¢’(—1) by means of using the preceding results.

There is at least one alternative way of evaluating the integral on the Lh.s. of
(4.10). After doing a trivial variable change, making use of the power series (2.6) and

integrating term by term, we get
/2 = + 5.1
3% dtlog I(t) = E 2"+1n(n ) s T o(n). (5.1)

Using (4.12), a comparison of (4.10) with (5.1) leads to

¢(-1) = —i———log2-;— log1r+172
2 ©0 ( ln
—gém((")» (5.2)

which provides us with an expression to evaluate {’(—1), since the r.h.s. can be numer-
ically calculated. Eq. (5.2) is another main result in this paper. For the even-n terms,

we have applied the relation

(27‘.)2771
2(2m)!

where B,,, is the 2m® Bernoulli number. As for the odd-n terms, we have used the

((2m) = (=)™ By, m € N, (5.3)

definition of the Riemann zeta function,

(=Y n>1, (5.4)
k=1
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and approximated ((n) with finite sums up to the desired accuracy. The outcome of
doing all that is

¢(~1) = —0.16542115..., (5.5)

in good agreement with the value given by Steiner [4]. Notice, moreover, the rapid
convergence of the series in (5.2), which can be numerically checked. In fact, using a
simple Pascal program we have got the stability of the first six figures of (5.5) after

summation of only eleven terms of the series in (5.2).
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