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ABSTRACT. The dlfferintegration or fractional derivative of complex order , is a

generalization of the ordinary concept of derivative of order n, from positive

integer v=n to complex values of u, including also, for u---n a negative integer, the

ordinary n-th primitive. Substituting, in an ordinary differential equation,

derivatives of integer order by derivatives of non-integer order, leads to a

fractional differential equation, which is generally’a integro-dlfferential equation.

We present simple methods of solution of some classes of fractional differential

equations, namely those with constant coefficients (standard I) and those with power

type coefficients with exponents equal to the orders of differintegration (standard

II). The fractional differential equations of standard I (II), both homogeneuus, and

inhomogeneous with exponential (power-type) forcing, can be solved in the ’Liouville’

(’Riemann’) systems of differlntegration. The standard I (II) is linear with constant

(non-constant) coefficients, and some results are also given for a class of non-linear

fractional differential equations (standard III).

KEY WORDS AND PHRASES. Fractional Derivatives and Fractional Differential Equations

1980 AMS SUBJECT CLASSIFICATION CODE. 34A

INTRODUCTION.

The dlfferlntegratlon operator (Ross [I], Oldham and Spanler [2], Lavoie and

Tremblay and Osier [3], McBride [4], Nishimoto [5], Campos [6], McBride and Roach [7]

may be interpreted as a derivative (or integral) of complex order + (or-),

which reduces to the ordinary n-th derivative (primitive) for +n (--n) a

positive (negative) integer. Differintegration operators have found applications in

such diverse fields as the hydraulics of dams (Ross [I]), potential fields (Weinstein

[8]; Erdelyi [9, I0], [12]) diffusion problems (Oldham and Spanier [II]) and waves in

liquids (Lighthill [12]) and gases (Campos [13]). In some applications, the solution

can be conveniently expressed in terms of fractional derivatives of elementary

functions, e.g. in the scattering of acoustic waves (Marston [14]) or vibrations of

visco-elastic rods (Campos [15]). Fractional derivatives have been used to solve

ordinary (Nishimoto [5]) and partial (Oldham and Spanier [16]) differential

equations. A more general problem is the solution of fractional differential

equations (F. D.E. s ), obtained by replacing in ordinary differential equations

(O.D.E.s), some or all of the ordinary derivatives of complex order.
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Although the subject of fractional differential equations is old (Liouville [17,

18, 19]), it does not appear to have been considered systematically in the modern

literature; several of the recent applications mentioned above involve relation(s)

between a function and its differintegration(s), which are particular instances of

F.D.E.s. The applications of F.D.E.s are potentially wider than the problems

mentioned above in connection with the fractional calculus, because the fractional

differential equations provide generalizations of the integral equations of Abel’s

(Sneddon [20]) and Volterra’s [21] types, which occur in many problems. A specific

F.D.E. representing an harmonic oscillator with memory-type damping, has been

considered in seismic problems (Duarte [22]), and solved using Fourier analysis

(Duarte [23]); the latter equation is a particular instance of a linear fractional

differential equation with constant coefficients, and this class of F.D.E.s can be

solved readily using methods similar to those applied to O.D.E.s (Forsyth [24]),

provided that the rules of differintegration (Lavoie and Tremblay and Osier [3];

Campos [25]) can be used. The implication is that certain classes of fractional

differential equations, which are actually integro-differential equations generalizing

Abel’s and Volterra’s types, can be solved as simply as O.D.E.s as will be shown in

th present paper.

Two classe of fractional differential equations, which as mentioned in the

introduction (I) can be solved by very simple methods akin to those in the theory of

O.D.E.s are the linear equation with constant coefficients (standard I), and with

power type coefficients with exponent equal to the order of differintegration

(standard II). Concerning the former (Part I), we start by considering a simple case,

to address the following issue: (3) given that an O.D.E. of order N has N linearly

independent particular integrals (L.I.P.I), how many L.I.P.I. has a F.D.E.?; We

proceed to solve the general linear F.D.E. of Standard I, in the homogeneous case

(4), and in the inhomogeneous case with exponential forcing (5), concluding with an

example (8) of a forced oscillator with memory-type damping. Concerning the F.D.E.

of standard II we must use (Part II), the ’Riemann" system of differintegration,

instead of the ’Liouville’ system used (Part I) for standard I, the two systems being

incompatible (Lavoie and Tremblay and Osler [3] Campos [25]). The solution of the

standard II is as straightforward as of standard I, both for the simplest (8) and

most general (9) homogenous F.D.E., and for the inhomogeneous F.D.E. with power-type

forcing ( I0); although all of the preceding F.D.E.s are linear, similar simple

methods can be used to solve (II) a restricted class (standard III) of non-linear

F.D.E.s.

PART I INTEGRODIFFERENTIAL EQUATIONS OF THE GENERALIZED ABEL TYPE

2. INTRODUCTION TO GENERALIZED ABLE EQUATIONS.

The general linear inhomogeneous fractional differential equation with constant

coefficients Am, and differintegrations of order u is:
m

M u
A D m F/Dz m G(z) (2.1)

where G(z) is the forcing function, and F(z) the solution. The ’Liouville’
dlfferintegratlon DU/Dz u of an analytic function F(z) is given by: (1) for complex
order with negative real parts (Campos [6]):
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Re(v) < O: DVF/Dz V {r(-v)}-I z (z_x)-V-IF(x) dx, (2.2)

viz, for v -n a negative integer, (2.2) is the n-times repeated integral from to

z; (il) for complex order other than a negative integer (Nishlmoto [5]):

Re(v) -I,-2,...: DVF/DzV {r(l + v)/2i} !z+)exp(i arg z)(-z)
-V-I F() d, (2.3)

vlz, for v n a positive integer the (Hankel [26]) path of integration can be closed

to a loop around z, and (2.3) reduces to Cauchy’s theorem for the ordinary n-th

derivative. Thus (2.1) is an ordinary Integrodlfferential equation if all orders

v1,...,vM are integers, whereas if some orders are non-lntegral, it has terms of the

type (2.2) or (2.3), justifying the designation of generallzed Abel type.

3. NUMBER OF LINEARLY INDEPENDENT INTEGRALS.

The original Abel’s equation (Sneddon [20]) is a particular homogeneous sub-case

of (2.1), with G(z) 0 Vl, v
2 -= v, M 2, % --AI/A2, viz.:

DVF/Dz V F(z) O, (3.1)

where the integral in (2.2) and (2.3) is indefinite. If v n is a positive integer,

then (3.1) is an ordinary differential equation (O.D.E.) with n linearly independent

particular integrals (L.I.P.I.s); we may thus enquire about the number of L.I.P.I.s of

(3.1) when v is not an integer. The answer to this question will be obvious, once

(3.1) is solved. The equation (3.1) can be solved in any ’Liouville’ type [17, 27]

system of dlfferintegration, in which:

V azDV{eaz} /DzV a e (3.2)

holds, e.g. this is the case (Campos [25]) for (2.2) and (2.3).

We may seek a solution of (3.1) in the form (3.3a):

F(z) e
az A a (3 3a,b)

where the constant a satisfies (3.3b); the latter is an algebraic equation with roots

a
k

given by:

log a
k

(log )/v (Log )/v + k 2i/v, (3.4)

where Log denotes the principal branch of the logarithm, and the integer k identifies

all other branches, each leading to one value a
k

of a. To each value a
k

(3.4)

corresponds a particular integral (3.3a), viz.:

I/v k2i/v
Fk(Z) exp(aaz) exp{ e z}, (3.5)

where A denotes the principal branch of the complex root. The number of linearly

independent particular integrals (3.5) of (3.1), depends on v, vlz.: (1) if v n is a
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positive integer, there are n L.I.P.I., e.g. (3.5) with k 0,...,n-l, viz. (3.1) in

this case is an O.D.E.; (il) if u p/q is a rational number, there are p L.I.P.I.,

e.g. (3.5) with k 0,...,p; (iii) if u is a real irrational number, or is a complex

number, the particular integrals (3.5) are linearly independent for all integer k 0,

+I, +2,..., +, i.e. they form a denumerably infinite set.

The L.I.P.I. (3.5) of the F.D.E. (3.1) can be denoted by Fk(Z), with k a,

..,B, and a-- 0,8 n in the case (i) of %) a a positive integer, a O,B p in

the case (ii) of %) p/q a rational number, and a -, 8 + in the case of %) a real

irrational or complex number. The general integral of the F.D.E. is a linear

combination of the L.I.P.I.s (3.5):

8 8
F(z) [ C

k Fk(Z) . C
k

exp[l },
k=a k=a

(3.6)

where C
k

are abltrary constants. An example of the solution of the F.D.E. (3.1)

with %)= i, is

DiF/Dzi
F(z) F(z) [ % exp {e2k z}, (3.7)

k=-(R)

where the ’constants of integration’ C
k

may be restricted so that the solution

converges, e.g. for z E x real. For example, if x > O, the general term of the series

(3.7) diverges exp{e
k2W

x} as k , unless the coefficients C
k

0 vanish, beyond

a certain order k > m; the latter is thus a necessary condition for convergence. If x

< O, then exp{ek2Wx} < for all k, and a sufficient condition for the convergence of

the series (3.7), is that the series of coefficients E C
k

converges for k= -m,...,+.

4. LINEAR, HOMOGENEOUS F.D.E. WITH CONSTANT COEFFICIENTS.

The general linear F.D.E. with constant coefficients (2.1), in the homogeneous

case G(z), consists of a polynomial P(D) of derivatives of complex order:

{P(D)} F(z) [ A D m F/Dz m
0

mm--I
(4.1)

applied to the function F(z). Using the ’Liouvflle’ rule (3.2), the solution of (4.1)

exists in the form of an integral function (3.3a), provided that a be a root of

M v
F(z) eaZ; 0 P(a) [ A a m

m
m=l

(4.2)

the characteristic pseudopolynomial (4.2), which is a polynomial of powers with

complex exponents equal to the orders of differintegratlon in the F.D.E. (4.1), and

having the same coefficients. If a
k

with k a,...,8 denote all the roots of (4.2),

and if they are all distinct, and

R(ak) O; P(a) R(a) n (a ak),
k=a

(4.3)

then the general integral of the F.D.E. (4.1) is a linear combination of the L.I.P.I.

(3.3a) for each ak, viz.
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F(z) C
k Fk(Z) C

k
exp(a

k
z),

k= k=
(4.4)

where C
k

are constants.

In the case where ak is a root of multiplicity s of the characteristic

pseudopolynomial (4.2), and

Q(ak) * O; P(a) (a ak)s Q(a), (4.5)

then exp(ak z) is one particular integral of the F.D.E. (4.1), and we can find (s I)

more L.I.P.I.s by the procedure that follows. The pseudopolynomial equation (4.2), in

the present case (4.5) of root of multiplicity s,

0 P(a) e
az Q(a) (a ak)s az

e (4.6)

is satisfied in the limit a ak, even if we differentiate g times with regard to a:

0 lim --{P(a) eaz} lim (a) a e (4.7)
a/ a

k
a a a

k
m=l

m

because P()(a) 0 for 0,...,s- I. The result (4.7) shows that if ak is a root

of multiplicity s of the pseudocharacterlstlc polynomial (4.5), to it corresponds s

particular integrals of the F.D.E. (4.1), namely

F (z) lira .eaZ..a! z exp(a
k

(4.8)
a/a

k

The particular integrals (4.8) are linearly independent for distinct roots ak, and for

each root of multiplicity Sk, for distinct O,...,Sk-l.
We have shown that, if the characteristic pseudopolynomial (4.2) has distinct

roots ak with k ,...,B, of multiplicities sk,

k
R(ak) * O; P(a) R(a) n (a ak) (4 9)

k
then the general integral of the F.D.E. (4.1) is a linear combination of the L.I.P.I.s

(4.8), B Sk-1 g Sk-1
k=a =0 k=a =0

where the C
k

are constants. For example, the linear homogeneous fractional

differential equation

DIF/Dzi + D-IF/Dz-i 2 F(z) 0, (4.11)

has characteristic pseudopolynomial

0 P(a) a
i + a-i-2 a

-i (ai I) 2 (4.12)

with the same roots as (3.7), with the important distinction that all roots are double

instead of simple; it follows that the general integral (3.7) is replaced by (4.10)

with sk 2, viz.
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F(z) (C
k

+ B
k

z) exp{e 2k

o
where C

k
C
k

and B
k

C
k

are constants.

(4.13)

5. INHOMOGENEOUS EQUATION WITH EXPONENTIAL FORCING TERM.

The complete integral of the linear inhomogenous fractional differential equation

(2.l), consists of the general integral of the homogenous equation (4.1), viz.

F(z) [. C
k Fk(Z) + Fo(Z)

kffia

plus a particular integral F (z)of the inhomogeneous equation. For example, if the
o

forcing term is a complex exponential (5.2a)

bz bzG(z) B e F (z) C, e (5.2a,b)
o

a particular integral (5.2b) is also a complex exponential, with coefficient C,

de tie rmi ned by

bz
B e

bz {P(D)} C, e
bz

C, P(b) e (5.3)

Assuming that b is not a root of the pseudocharacteristic polynomial P(b) O, we can

solve (5.3) for C, B/P(b), and obtain a partlcular integral (5.2b) of the

inhomogeneous F.D.E. (2.1) with exponential forcing (5.2a), viz.

bz
P(b) O; F (z) {B/P(b)} e

o
where P(b) is defined by (4.2).

If b is a root of multiplicity s of the pseudocharacterlstlc polynomial

(5.4)

P(a) (a b)s Q(a), P(S)(b) s!Q(b) O, (5.5a,b)

we cannot divide (5.3) by P(b), to obtain (5.4) (5.2b). In this case, we start with

the formal identity (5.3) with b replaced by a,

am
B e

az
C, (a b)

s
Q(a) e (5.6)

and differentiate s times with regard to a to obtain

s az
B z e C, s! Q(a) e

az + O(a b), (5.7)

before letting a b:

s bzB z e C, st Q(b) e
bz

s! Q(B) F (z) (5.9)
o

where the particular integral F (z) was substituted from (5.2b). Since Q(b) 0 for a
o

root (5.5b) of multipllclty s, of the characteristic pseudopolynomlal (5.5a), we can

solve (5.9) for the particular integral
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s bz (s)P(a) O((a-b)S); F (z) {Bls!q(b)} z e {BIP
O

s bz
(b)} z e (5.10)

of the inhomogeneous F.D.E. (2.1), (4.2).

For example, the inhomogeneous linear fractional differential equation with

constant coefficients and exponential forcing,

bzDiF/Dzi- + D-iF/Dz-i- 2 F(z) e (5.11)

has characteristic pseudopolynomial (4.12),

P(b) b
i + b

-i
2 2(cos log b I). (5.12)

Hence, a particular integral of (5.11) is (i) given by (5.4):

log b 2k: Fo(Z) {cos log b }-I bz
e (5.13)

k2provided that b is not one of the roots a
k

e associated with (4.13) of the
2k 2khomogeneous F.D.E. (4.11), i.e. b e for all integer k; (ii) if b e for some

integer k, then the pseudocharacteristic polynomial (5.12) has a double root

2k -4kP" (e 2 e

and the particular integral is (5.10) with s 2, viz.

(5.14)

2k -4k 2 fe2kb e F (z) 2 e z exp z}.
o

(5.15)

The complete integral of the inhomogenous F.D.E. (5.11) is obtained by adding (4.13)

to the particular integral (5.13) or (5.15).

6. OSCILLATION AND RESONANCE WITH NON-INTEGRAL DAMPING EXPONENT.

As a demonstration of the simplicity of the present method of approach to

fractional differential equations, we reconsider a free or forced harmonic oscillator

with memory-type damping, which was solved elsewhere (Duarte [22]), using Fourier

analysis to study the free motion only. When a particle moves along a trajectory

x(t), defined by a coordinate x as a function of time t, the viscous damping force is

taken as proportional and opposite to the velocity

0 < r < 2; s(t) -V Drx/Dtr, (5.16)

where r and V is the damping coefficient. Other integer values of the exponent r

correspond to the inertia force associated with mass m for r 2, and to a linear

spring of constant q for r=0; their combined motion under forcing with amplitude f and

frequency m, is specified by

D2 imt
m x/Dt2 + Drx/Dtr + qx f e (5.17)
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The case of a friction force (5.16) with order of differlntegration 0 < r < 2 between

an elastic r 0 and an inertia r 2 force, has been considered in connection with

the modeling of seismic events (Duarte, [22]); whereas for the viscous damping, the

f.orce (5.16) with r is a function of local velocity at the ’present’ point x(t),

and or r

D
r x/Dtr-- (D2/Dt 2) {r(2 -k)}

-I t (t- T)k-2x() dr, (5.18)

it depends on the trajectory x() for all past time t T > -, introducing a memory

effect (Volterra [21]).

We consider first the free motion, unaffected by forcing f O, so that we obtain

the homogenous F.D.E. (4.1), with characteristic pseudopolynomial

2 2P(a) a + 2ka
r + (5.19)

o’

where is the temporal damping, and the natural frequency,
o

X U/(2m), Jq/m. (5.20ab)
o

The roots ak of P(ak) 0 specify (5.19) the partlcular integrals exp(akt), implying

that: (i) the motion is oscillatory if Im(ak) # 0, and monotonic if Im(ak) 0; (ii)

the amplitude is constant if Re(ak) 0, and increases with time for Re(ak) > 0 and

decreases with time for Re(ak) < 0. Thus, the free motion consists of the

superposltlon of modes

x(t) [. C
k exp(akt) . C

k exp{(- + link)t},
k=a k=a

(5.21)

with frequency k Im(ak) and decay -Re(ak).
The forced motion, adds to (5.21), a particular solution of the inhomogenous

F.D.E. (5.17)with (5.20ab), vlz.

D2x/Dt2- + 2 Drx/Dtr + 2 x(t) (f/m) e (5.22)
o

The forced motion is specified by (5.4), vlz.

2 2
P(i) m + 21(i)

r
0; x(t) (f/m) {P(im)}

-I
e (5.23)

o

if the forcing frequency is not a root of the characteristic pseudopolynomlal, in

which case the amplitude of the motion is a constant (f/m)/IP(i)l, and there is a

constant phase lag arg{P(im)}. If is a root of multiplicity s of the

characteristic pseudopolynomlal, the forced motion is given by (5.10), vlz.

x (t) (f/m) {3SP(im)/3s}-I i
-s

t
s eit, (5.24)

o

which corresponds to a resonance of order s, with amplitude growing in time ts and a

phase shift -s/2.
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PART I[ INTEGRODIFFERENTIAL EQUATIONS OF THE GENERALIZED VOLTERRA TYPE

7. INTRODUCTION TO GENERALIZED VOLTERRA’S EQUATION.

Another class (standard II) of linear fractional differential equation is

M. A z d F/dz G(z), (7.1)
m

m=l

where the complex exponent v of the powers coincides with the order v of the
m

’Riemann’ dlfferintegratlon, which is denoted by small dV/dz V, to distinguish from the

capital DV/Dz V, used for the ’Liouville’ differlntegratlon in the F.D.E. (2.1) of

Standard I. The ’Riemann’ differlntegration applies to a function with a branch-polnt

of exponent , vlz. to F(z) zf(z), where f(z) is analytic, and is speclflfed

(Lavole and Osier and Tremblay [28]; Campos [25]) by: (i) a definite integral along

the llne 0,z:

’v -1 z -v-1 l;ijdV{z B f(z)}/dz {r(-v)} fo ( z) f() d,

if + Re(v) > 0 > Re(v); (il) a Pochhammer [29] double-loop integral,

(7.2)

idV{z v f(z)}/dz {r(l + v)/(4 e sin(v)))

f(z+,O+,z-,O-)(_ z)-V-1 f() iIj d,

for complex , other than integer and v a negative integer. If all are positive
m

integers, then (7.1) is an Euler type O.D.E. (Ince [30]), but if one or more are

non-lntegral, then (7.1) with (7.2) or (7.3) is an intergrodifferential equation, of

the generalized Volterra type, with power-type coefficients.

8. SOLUTION IN TERMS OF BRANCHED VERSUS ANALYTIC FUNCTIONS.

The designation Just given to the F.D.E., stems from the fact that the simplest

instance, with G(z)ffi 0 I’ v2 v’ --AI/A2’ m 2, is

z dVF/dzx ). F(z) G(z) (8.1)

which, on account of (5.23), is a Volterra [21] type of integral equation (Hilbert &

Courant [31]), sometimes also designated (Whittaker and Watson [32]) a Fredholm

equation of the second kind, and the case 0 is a Fredholm equation of first

kind. If all I,..., are integers, it is well-known that the Euler linear equation
m

(7.1) can be transformed into the type (2.1) with constant coefficients, via an

exponential change of independent variable. This elementary transformation does not

apply as well in the case of dlfferintegratlons with complex order , since in this

case, the rule of implicit dlfferintegration (Campos [6])

3-v-I

* z d
{F()

--.JZ
e (8.2)

is not readily substituted in (8.1).
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The difficulty in transforming the Euler type (Standard I) fractional

differential equation (7.1) into the type (Standard I) with constant coefficients

(2.1), is rather fundamental, because the former uses the ’Riemann’ differintegratlon

(7.2), (7.3) and the latter the ’Louville’ dlfferntegration (2.2), (2.3). Although

the two systems of differlntegration look superficially similar in the Integrands,

they use different paths in the complex plane (2.3), (7.3), i.e. the ’Liouville’

system involves indefinite (2.2) and the ’Riemann’ system involves definite (7.2)

integrals. The two systems of differintegration are incompatible (Campos [25]) for

non-integral , because the Hankel path in (2.3) cannot be continuously deformed into

the Pochhammer loop in (7.3), viz. the ’Liouville’ system applies to analytic

functions, whereas the ’Riemann’ system applies to functions with one branch-polnt.

It has been shown (Lavoie and Tremblay and Osier [3]), that simultaneous application

of the ’Liouville’ [17] rule (3.2) and the ’Riemann’ [33] rule of differlntegratlon

dV{zU}/dz {r(1 + u)/r(1 + u- v)} z (8.3)

can lead to contradictions, if is not an integer.

The preceding remarks serve as a warning that the differlntegratlon operators are

more than just replacing integer for complex order of differentiation although some

rules, such as (3.2) or (8.3), do work out that way; the theory of differintegratlon

does have its subtle points, when compared with ordinary differentiation. We leave

these matters to the references, and continue the presentation of results, which can

be deduced in a very simple way, looking on the surface just llke straightforward

extensions of ordinary derivatives. The rules of differlntegration have to be proved

from the definitions of the integral operators like (2.2), (2.3), (7.2), (7.3), and we

are using only the simplest expressions holding for complex order . Alternative

methods of solution, llke changes of variable, which hold for O.D.E.s, may fail to

have simple extension to F.D.E. s, if the rules of differentiation have no

straightforward and valid extension to dlfferintegrations. Thus we proceed to solve

F.D.Es (8. I) and (7.1), starting with the homogeneous case, and using the rule (8.3),

which holds (Campos [25]) for all complex ,v other than B a negative integer. Since

the actual calculations are very simple, and somewhat analogous to those in Part I,

they are mentioned briefly in the following sections.

9. ROOTS OF EQUATIONS INVOLVING GAMMA FUNCTIONS.

The homogeneous case of (8.1), viz.

z dF/dz F(z), (9.1)

has a power type solution (9.1a)

F(z) z
a

r(l + a)/r(l + a ) k (9.2a,b)

where a satisfies (9.2b), which was deduced using (8.3). Thus the exponent a of

(9.2a) is a root of (9.2b), which, for v n a positive integer, is a polynomial

equation of degree n, viz.
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The n roots a
k

with k 1,...,n specify the n particular integrals of (9.1), which is,

in this case, the original Euler equation. If v is non-lntegral, the values of a are

roots of the equation (9.2b) involving Gamma functions. Similarly, the general

homogeneous fractional differential equation (7.1) of Standard II, has particular

integrals of the form (9.2a), where a is a root of the dlscrlminant equation

M
0 P(a) r(t + a) {Am/r(t + a- v )} (9.4)

m=
m

which is: (i) a polynomial, if all exponents Vl,...,v are integers; (ii) a
m

transcendental equation involving Gamma functions if at least one v for m M is
m

non-lntegral.

If the dlscrlmlnant equation (9.4) has only simple roots ak, with k=a,...,B, then

the corresponding particular integrals (9.2a) are llnearly independent, and the

general integral is a linear combination

B 8 a
k

F(z) C
k Fk(Z)-. C

k
z

k’-a k=a
(9.5)

with constant coefficients Ck. If the root ak is of multiplicity s, then a procedure

similar to the derivation from (4.8) to (4.9), would show that there are s particular

integrals:

akFk(Z) {Fk(Z)}l(ak) (log z) z (9.6)

with O,...,s I; the particular integrals (9.6) are linearly independent for

different roots (distinct ak) and different multipliciites (distince 4). Thus, if the

discriminant equation (9.4) has roots ak with k a,.**,, of multiplicities sk (4.9),

the general integral of the homogeneous fractional differential equation of Standard

M V V
m mI A z d mF/dz O,

mffi
m

(9.7)

is given by

Sk-I
(log z) (9.8)

a
kF(z) . z . C

k
k=a =0

where the Ck are constants. In the case sk when all roots are simple, (9.8)
o

simplifies to (9.5) with C
k =- Ck.

As an example, the F.D.E. of standard II,

112 I/ 1/2 -112 -I/ -112z d -2Fldz z d -2Fldz 0, (9.9)

has dlscriminant equation

0 P(a) {r( + a)/r(I/2 + a)} {(2a- l)l(2a + I)}. (9.10)
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One root of (9.10) is a I/2, showing that z is a solution of the F.D.E. (9.9), as

can be checked using (8.3). Generally F.D.E.s are not reducible to O.D.E.s but in the

particular case (9.9), this is possible via the change of dependent variable (9.11a)

H(z) d
-1/2 F/dz-1/2, F(z) dl/2H/dz 1/2, (9.11a,b)

where (9.11b) is the inverse of (9.11a), obtained using the identity

dVd- d-Vd proved elsewhere (Campos [6]). The change of variable (9.11a)

transforms the F.D.E. (9.9) to the O.D.E. (9.11a):

H(z) z dH/dz, H(z) az, (9.12a,b)

which has solution (9.12b); the latter corresponds, through the inverse change of

varibale (9.12ab), to the solution F(z) z of (9.9) apart from an irrelevant

constant factor.

I0. F.D.E. WITH POWER-TYPE COEFFICIENTS AND FORCING.

To conclude the study of Standard II, we consider the Inhomogeneous fractional

differential equation (7.1) with power-type forcing

M v
m m b" A z d mF/dz -B z (10.1)

m
m=l

A particular integral is the same complex power

bP(b) # O; F (z) {B/P(b)} z (10.2)
o

where the coefficient involves the discrimlnant function (9.4), and it is assumed that

b is not one of its roots; if b is a root of multiplicity s of the dlscrimlnant

function (9.4), then

P(b) P (b) .... P(S-1)(b) 0 P(S)(b); F (z) {B/P(S)(b)} (log z)
s b
Z

o
(10.3)

the particular integral (10.2) is replaced by (10.3). The latter (10.3) is deduced by

a procedure similar to that used in 5, to derive (5.10) from (5.Sa,b); in the case b

is not a root of (9.4), the result (10.3) rlth s 0 coincides tth (10.2). e
complete integral of the tnhomogeneous F.D.E. (10.1) of Standard II consists of he

sum of the particular integral (10.2) or (10.3), tth he general integral (9.5) or

(9.8) of the homogeneous F.D.E. (9.4).

an example e consider the tnhomogeneous F.D.E.

zl/2 dl/2D/dzl/2 z
-1/2 d-I/2F/dz-1/2 ’n’-- zb. (1o.4)

A particular integral is (10.2) with (9.10):

b
b I/2: F (z) {r(I/2+b)/r(l + b)} {(2b + l)/(2b- I)} /7 z

o

provided that b 1/2. If b 1/2, we evaluate the derivative of (9.4):

(lO.5)

P(a) r(1 + a) {llr(l12 + a)- Iir(312 + a)}, (lO.6a)

P’(a) {r(l + a)/r(I/2 + a)) {(I + a) 4(I/2 + a)}
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{r(l + a)Ir(312 + a)} {,(I + a) -,(312 + a)}, (10.6b)

where @(z) E r’(z)/r(z) denotes the Digamma function (Copson [34]). Since

P’(I/2) J/2, the particular integral (10.3) with s I, b I/2, B J is given by

b I/2: F (z) 2 /z log z. (I0.7)
O

The general integral of the F.D.E. (10.4) is obtained by adding to (10.5) or (I0.7),

the expression Cz, where C is a constant.

The change of variable (9.11a) transforms the F.D.E. (10.4) into an O.D.E.:
b+I/2

z dH/dz H(z) ,/ z (10.8)

The particular integral of (10.8) is:

H (z)
o

,/. (b 1/2)-1 b+l/2
z if b I/2, (10.Sa)

log z if b 1/2. (lO.gb)

Substitution of (lO.9a,b) into (9.11b), and use of (8.3), ylelds respectively (I0.5)

and (10.7). It could also be checked, by direct substitution, that (I0.5) satisfies

(I0.4) for b I/2, and (10.7) satisfies (10.4) for b- I/2. The former proof uses

(8.3), whereas the latter uses:

dV{z I log z}/dz v= (r(l + u)/r(l + u- v)}.

z {log z + 9(1 + ) 9(I + p v)}, (10.10)

with I/2, v el/2; the formula (I0. I0) follows from (8.3) by parametric differ-

integration with regard to , on account of the uniform convergence in .
II. PROPERTIES ON NON-LINEAR F.D.E.s OF STANDARD III.

We have so far considered two classes (Standard I and II) of linear F.D.E.s and

conclude with some results on non-llnear F.D.E.s of Standard III:

z I dVF/dzV ),{F(z)}b. (I1.1)

The linear case b I, includes the Standard I (3.1) for O, and the Standard II

(9.1) for , v. We cannot expect the very simple methods used in the present paper

to go very far towards solving a non-llnear F.D.E. such as (11.1); thus we consider

only the question of existence of a power type solution (9.2a), which, when

substituted into (II.I) yields:

ab
{r(l + a)/r(l + a v)} za+B-v= z (11.2)
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the equation (11.2) implies two identities:

X rCl + a)IrCl + a- ), a C- )ICb-l), (ll.3a,b)

among which a can be eliminated:

rCt + (- v)/(b- I)) X r(t + (- bv)/(b- l)). (11.4)

It follows that the non-llnear F.D.E. (II.I) has a power-type solution (9.2a), if and

only if the parameters U,v,,b satisfy (II.4); in the latter case the exponent is

given by (ll.3b).

For example, the non-llnear fractional differential equation

1/2 1/2
z d- /2F/dz- , {F(z) (11.5)

has power type solution, for given by (ll.6a)

r(2)Ir(512)ffi 41(317), a I, (ll.6ab)

with exponent (ll.6b). Thus z is a solution of the non-linear F.D.E.

I/2d-I/2F/dz-I/2 {4/(3) {F(z) 2
z (11.7)

as can be checked using (8.3).

The equation (II. I) can be generalized to non-llnear fractlonal differential

equations of Standard III:

M m v v
}b. A z d mF/dz m {F(z) (11.8)

which is linear for b or b 0; in the latter case it reduces to Standard I (2.1)

for I M 0, and to Standard II (7.1) for m urn" The non-llnear F.D.E.

(11.8) is homogeneous, has power type solutions (9.2a) if the identity

M a+m-Vm ab. A
m

{r(1 + a)/r(1 + a )} z k z (11.9)
m=l

m

is satisfied. This implies a set of M + equations:

a(b- I) I I ..... m- (ll.10a)m’
M

I/r(i + a) . Am/r(i + a (ll.10b)
mffil

m

from which a can be eliminated, leading to a set of M restrictions on the 3M +

parameters Am,m,Vm ’b’ which have to be satisfied, in order that (11.8) has a solution
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of the form (9.2a). Less simple properties of differlntegratlons (Campos [36, 37])

may also have applications to F.D.E.S.
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