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ABSTRACT. In the present paper we consider the magneto-thermo-elastic wave produced

by a thermal shock in a perfectly conducting elastic half-space. Here the Lord-

Shulman theory of thermoelasticity [I] is used to account for the interaction between

the elastic and thermal fields. The solution obtained in analytical form reduces to

those of Kaliski and Nowacki [2] when the coupling between the temperature and strain

fields and the relaxation time are neglected. The results also agree with those of

Massalas and DaLamangas [3] in absence of the thermal relaxation time.
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I. INTRODUCTION.

Kaliski and Nowacki [2] investigated the problem of magneto-thermo-elastlc

disturbances generated by a thermal shock in a perfectly conducting elastic half-space

in contact with a vacuum. It was assumed that both in the medium and in the vacuum

there acted an initial magnetic field parallel to the plane boundary of the half-space

and there was no influence of coupling between temperature and strain fields.

Later, Massalas and Dalamangas [3] considered the same problem where the coupling

between the temperature and strain fields was considered. Very recently Chatterjee

and Roy Choudhuri [4] extended the problem [3] in generalized thermo-elasticity of

Green and Lindsay taking into account the two relaxation times.

In the present paper we extend the problem [3] in generalized thermoelasticity by

using the thermal relaxation time of Lord-Shulman theory [I]. The solutions for

temperature distribution, deformation and perturbed magnetic field in the vacuum are

obtained in analytical form in the first power of the magnetothermo-elastlc coupling

parameter e and relaxation parameter T ’. In absence of e, T the solutions agreeo o
with those in [2] and in absence of ’, the results agree with those in [3].

o
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Surface stress for different times is calculated and graphically presented. It

believed that this particular problem has not been considered earlier.

2. PROBLEM FORMULATION.

We assume that a magneto-thermo-elastic wave is produced in an elastic half-

space x > 0 due to the thermal shock 0(o,t)--oH(t) applied on Xl--0 where 0o is a

constant and H(t) is the Heavlside function. We also assume that in both the medla

there is an initial magnetic field acting in the direction of x3-axls. The

simplified equations of slowly movlng bodies in electrodynamlcs after llnearlzatlon

are the fol[owlng:

x =-- (2 )c t

.=o, %

where denotes the electric field, is the perturbation of the magnetic field, is
O

the initial constant magnetic field, is the current density vector, u denotes the

displacement vector, o is the magnetic permeability, o is the electric conductlvtty

and c is the velocity of light. The displacement equation of motion in thermo-

elasticity including the electromagnetic effect after llnerlzatlon is,

IJov2 + (+.) (.) + [(h5 x o -o o (2.2)

Also the modified form of Fourler’s law of heat conduction taking into account the

thermal relaxation time [I] is

pc.( + "o) + ?ro( + 1/2A) K 0’it’ (i=1,2,3) (2.3)

where X, are the Lame’ constants, T is equal to (3k+4) oT, oT is the co-efflclent

of linear thermal expanslon, is equal to T-To; To’T are the reference and absolute

temperature of the body respectively; K is the co-efflclent of heat conduction; p is

the mass density; c is the specific heat at constant volume; T is the relaxation
O

time. The magneto-thermo-elastlc wave propagated in the medium x > 0 is assumed to

depend on x and time t.

For o (0,O,H3) equations (2.1) reduce to

UoH3( E2f= o o) c (o,o ), .=c
C tl

0
Equations (2.2) and (2.3) then lead to

3 0).x (2.4)

2u
X+2p + a

2 )0op) _--y- y--t ,cu
x
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a2 a2Ul
cv(- + z ---at2) + YTo(-l + z

a2 0a3u-l-) K
2x at

2 x
(2.6)

where is the Alfven wave velocity. For convenience, we shall use the

notations u u, x x.

In vacuum the system of equations of electrodynamics are

a2 a2 o
0

’2 2 2.) h3x c at

a2 a2 o
0

’2 2 5 E2x c at

(2.7)

where x’ x.

The components Tll and Tll of Maxwell’s stress tensor in elastic medium and in vacuum

are

o h and T o o
Tll 4--’- 3H3 11 h3H3"

The normal mechanical and thermal stress is

Oll

The boundary conditions to be satisifed are

Oll + Tll Tl O, x x’ 0 (2.8)

oE
2 Z

2 x x’ 0 (2.9)

(o,t) 0 H(t).
o (2.10)

3. SOLUTION OF THE PROBLEM.

To find the solution of the problem we now introduce the following notations and

non-dlmensional variables

2
2

C2 2 2 CXo CtoCl o o ao + Cl’ "--;-’ z---;-,
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K

The equations (2.5) (2.7) and boundary conditions (2.8) (2.10) become

a2U aZ )2U
0, >0 (3.1)

}2Z 3Z _, }2Z d U a3u -o, >o2
(3.2)

o 20h3h3 2- 0, > 0
2 2

(3.3)

}----U z + 131Oh3 - ’ 0 (3.4)

where

32U ab3 o,

0
Z(o,T) -- H(T),

o

(3.5)

(3.6)

Initial conditions in the new variables are

u(:,o) o, z(:,o) o, az(;,.o_) o.

We now introduce a potential function @ defined by

Using (3.7) in (3.1) and then integrating we get

32 )2z(,) (--f ) In > O.z2

(3.7)

(3.8)
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Using (3.7), the equation (3.2) leads to

2z z T’ 2z 3 4i-- T’ O@2 )T o 2 @2 o @2
In the Laplace transform domain the equations (3.8), (3.9) and (3.3) become

(3.9)

a2 2z(,s) (-2-s) , > o

()C -s ’o s z s(l+’S)o @,2’ > 0

3o
c3 e Bs ’ { > 0

(3.10)

(3.11)

(3.12)

In Laplace transform domain, the boundary conditions (3.4) -(3.6) reduce to-- + B1f3= o = o

2 %_ h3
O, { ’ 0

e
Z(o,s) -- -o

(3.13)

(3.14)

(3.15)

Ellmtnating from (3.10) and (3.11) we get

@2
s (3.16)

The equation (3.16) reduces to (31) in [4] on setting

The general solution of (3.16) vanishing at is

_X -X2(,s) Cle + C
2 e > 0

where 1I, 2 are given by the roots of the equation

(3.17)

x4 s {+++(+) x2 + 3(+ ) o.

Hence

2[S{s+l+e+Ts+s) :I: [(1+2T’2o + ,2o + 2E’o + 2’o 2)s2

+ 2(- I+2E:T’ + T’ + 2T,) S + (1+)2[/2}/2’"
0 0 0

(3.18)

(3.19)
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The equation (3.19) agrees with that of (34) in [4] for a’fa*’= ’.
o

For a’ 0 ’ffi 0, the equations (3.16), (3.19) are in agreement with that of (24) in

[3]. Thus the equations (3.1), (3.2), (3.16), (3.19) are more general in the sense

that they incorporate the effect of thermal relaxation time of Lord-Shulman theory.

From (3.10) using (3.17) we have

z(,s) C1()‘1 S e C2( s e > O. (3.20)

From the boundary conditions (3.13) -(3.15) taking into account (3.17) and (3.20)we

obtain a linear algebraic system with respect to C
1,

C
2 and C

3 as

C1 s2 + C2s2 +BlC3 0, at ’ 0 (3.21)

B2S)‘lC + 62s)‘2C 2 6 C
3 O, at {- {’ffi 0

0
2 2

s
2 o

c1()‘ s +c2( "T s
o

(3.22)

(3.23)

The constants Ci(iffil,2,3) being determined by (3.21) (3.23), the solutions

for ,Z, U, h3 are given by

-h -1/2
O (s+6162),2) e (s6 + 6162),1 e

( {,s, e, ) -[ 2
(3.24)

o s()‘1 1/2 (6182s + 6()‘1+1/2)s + 6162)‘1)‘2

(3.25)

0 )‘2(s6 + 6162)‘1 e )‘1(s6 + 6162)‘2 e
({,s e,’) {> 0 (3 26)

o 2
o s()‘1-2 (BB2 + B(x+) + BB2

’s, oO s62 e-I’
h3( , ’)

o T 2 ’ > O. (3.27)

Since E, ’o < for small thermo-elastlc coupllngs, we expand the functions , , 3
into Maclaurlan’s series and retain the first two terms in the series expansion to

obtain
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e --S fl e-s
(,s,,r’)--- e

o [ + {
o (6 + 8162) (s-1)2

2
e

+
821 (s-l)

2 2
s(s-l)

6 62 +_e e

2( 8+61 82)s(s_l
2 /(s- I) 2s (/s--- I) 2 2( s+6! 82)s(s+) 2

+ o I e-L
2 }] (3.28)

-s s--
62e 6e

(8+61 62)s (s-l)+e{-2( +61 )s/’(s-1)2

2( +61 ) ,s (s-l) 2ss(s-l) (,/-s-1) 2(B+61 82)s(s-l) (s-1)
2

2( (-61 B2)s Vs(s-l)(V-B-I)
2

2(8+61 82)2s(s-1) (s+l) 2
2(’61 2)s,s(s-1) (,’+I)

2( 8+61 62) 28 -s(s- V--I- 2}+’
{

o 2(s-l) 2(s-l)
61 62 e

2( B+61 82)/6(s-l)

6 e-
(’6!62 (s-l) 2

+ 6 e

+61 62),/-s(s_ 1)2
}] (3.29)

-Ss{’ -m{’e 62 e 662e3(’,s,e, Zo ’) =- e )2o (+6182) s(s+l) 2(’6162 s(/’s/1)

82"s e-BS
To’

2( 8+61 B2)(/’s+I) 2]
(3.30)

Taking inverse laplace transform we obtain (Chatterjee (Roy) and Roy Choudhurl [4],

Hetnarskl [5], Oberhettlner and Badll [6]),
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+ (--- ) e )erf /-’-] H(r-) + I ’ ) f2 ’ ) fl ’ ) + erfc(

8182
2(8+81

2( II-81B2)
5/2

e 4.r}] (3.31)

o (--)
U(,I,e,T) f2(,)- 24’--e + erfc

o 2

8 (e r-_ )H( T- )

81132 [e (r-) erf r-_ 2 H(-) + e{- 2(8+8[ 82 If3(,T) f2(,T)

8 [Tf (,T)- f (,T)- f (,T)+ erfcerfc )1 + 2(I1"8I 2 2

B (T--I) e2( 8+81152
IB T- )eT-)H(r-) + 2( -I-8182)

81 82r-OH )+ 2( I-B182) 1 ’ T)

-[ 12) fz( , ) f, , )rc() + IBI IB2 ’ -) e(1-) --] H( )
2( 8+8182) + - erfc r-

-(7
+ f4(, ) + 4 e erfc(i_)(r-) (2r--2)e (r-)erfc(i_ /T)

" 2 2:
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5 2_2+ -( -0+(-) ](r-) + 82 3 F_ (r-K)
2 [- (r-K-) "

(SrSK-3)e
2( )

5 (’t- _32 3+ gC-K-)e K)erf/-- ((r-K) + (r-Kl2lerf/- +- (r-K) + (r-K)2-11

2

If (K ) 4-: e r+K)erfc(_____ +/)
2

2( 4-1 82
9

2 (r-K- -) (7-TK-5)e (r-K) 11 r- K)er
"" (7"r’-7 K- --)e f/

+ ((r-F.) + (r-K) 2)erf (-K)-(-K)2+2]H(r-K)} + + ,
o {" f2 (K,’r)

81 82 r K) B r K)e - K)H( r ) +2(8+% 82
e erf/- H(T-K)

’812

[((r-K) )e K)erf + H(r-K)}]. (3.32)

0

h3( ,, [.
o 82o

eCr-sK’)erfc/r-SK H(’r-SK’) {- 2(r-BK’) ’
+ [l-2(r-SK’) 2] e(r-SK’)erfc/r-SK H(r-SK’)} + ’ {- 82

o 2 8+ 81 82 [/7( r- 8K’

2(r-SK’) e(r-SK’)erfc/r-SK + 2/r-BK’] H(r-SK’)}]. (3.33)

where the functions fi(K,T), i-1,2,3,4,5 are given by

f i( K, T) " [e-erfc(- ) + e %rfc(---_ + )]
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2

3 (’t) eric + 2 + (2 g-l)e Oerf

2
f3 (’T) eric

w
e (2T+-I) e (r+Oerfc(--_ + )

2
f4(, ) f em{2 e + [2(z-m)-] e (z--m)erfc( -) }dm

o 2

2
4(r-m)

f5(’) Sem {2 e
o

[2(T-m)+] e rb-m)erfc(- + /--) }din

where erfx and erfcx denote the error function and complementary error function

respectively.

4. NUMERICAL RESULT.

The surface stress is given by

Tl
%H3

e l-erf -- + l-erf)2(I+83 {- 2
x

(I-2:2)e (
4,z s(z+3)

where

eZ(l-erf/) + }

If there is no coupling between the electromagnetic field and strain

o 0 on a0field, H
3 0, 0, 83 0 and 8 is finite so that TII

In presence of the electomagnetlc field and strain field, the surface stress is given

by

oT
11

8oH3 82
4.To (1+3)

X( T, e, ’o
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We can assume _B
3 << since c >> and ao and Co are finite. We take B3 .05.

For numerical calculation we take the material of the half-space to be copper for

which e 0.0168. If we assume that a representative value of the relaxation

time is 10
-11 (see [7]), then the non-dimensional thermal wave speed in copper

should be approximately equal to 0.66.

[8]).

Then ’ 2.3 (For thermal properties and sound wave speed in copper, see ref.
o

Surface stress X for various values of times are exhibited In the following

table and also graphically represented.

"r -IOX
5.4

1.5 7.7
2.0 11.8
2.5 16.5
3.5 23.2
4.0 25.0
4.5 26.8
5.0 28.3
5.5 30.0
6.0 31.5

d/v/s/on
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