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ABSTRACT. Biharmonic eigen-values arise in the study of static equilibrium of an elastic body

which has been suitably secured at the boundary. This paper is concerned mainly with the

existence of and L P-estimates for the solutions of certain biharmonic boundary value problems

which are related to the first eigen-values of the associated biharmonic operators. The methods

used in this paper consist of the "a-priori" estimates due to Agmon-Douglas-Nirenberg and P. L.
Lions along with the Fredholm theory for compact operators.
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I. INTRODUCTION.

Let [l be a bounded domain in Rv with smooth boundary r and k E IL Let A denote the

Laplace operator on R2v. Consider the following eigen-value problems for the biharmonic operator

A2u onX2u,. o, on r, (1.1)
Au O, on r;

and

OU =O, on r,
On
O(Au 0 on r;
On =’

and

2U --/U, On ,
O, on [’,- 0, on r.
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0Here denotes the exterior normal derivative at a point on the boundary I" of f. The eigen-

value problem (1.1) arises in the study of the static equilibrium of an elastic body f which is

simply supported along the boundary F while problem (1.2) corresponds to the case when the

boundary F is supported by sliding clamps. The eigen-value problem (1.3) arises when the

boundary F of an elastic body is fixed or cantilevered.

The spectrum and the corresponding eigen-spaces for the problem (1.1) (respectively (1.2)) can

be studied by considering the biharmonic operator associated to (1.1) (respectively (1.2)) as the

squares of the second order Dirichlet (respectively Neumann) operator --A in L2(f). Indeed, >,2 is

an eigen-value for (1.1) iff k is an eigen-value for the Dirichlet problem

--Au ,u, on f
u 0, on I’, (1.1)*

and q is an eigen-value for (1.2) if/ 7 is an eigen-value for the Neumann problem

-Au "u,
(1.2)*

O, on I’,

(see [I]).

We note that the associated biharmonic operator in L(f) for the eigen-value problem (1.3)
cannot be obtained as the square of any operator in Lz(f) defined in terms of the Laplacian

operator -A. Our approach then is to study the eigen-value problem (1.:3) through the notion of

weak-solutions and the Fredhlom theory of compact operators. Accordingly, we define in section

2, a biharmonic operation A associated to (1.3) which has Wo2’(f0 as its domain in L’(f).
The eigen-value problem (1.8) was studied earlier by other methods by Courant-Hilbert [2],

Weinstein [8], Bazley, Fox and Stadter [4] and Fichera [5] (see also Weinstein-Stenger [6]).

The results concerning (1.3) in this paper (c.f. Theorem 2.2 (i), (ii) and (iii)) are about the
general nature of the eigen-values and the-eigen-spaces and are for general f in RN. The other
works mentioned give methods for the computation or estimation of the eigen-values and the
eigen-functions for (1.3) (refer to section 2 for more details). In general, they just deal with either
a square or a circular domain in R.

Furthermore, our approach for problem (1.3) also works for (1.1) and (1.2) through
straightforward adaptations. Besides, our approach yields as a by-product, some preliminary L 2-
estimates ((2.4), (3.6) and (3.7)) which are needed in the proofs of the main results of this paper.

The main interest of this paper is to obtain LP-estimates on u, where u is a solution of one of
the following linear problems

A2u X12u f, or, f,
u O, on

Au O, on F;

A2u f, or*

Ou =0,

OiA
on F,

0 O, on r;

Au2u--Iu--’-f,

on

O, on F,

---0, or* I’.

(1.6)



BIHARMONIC EIGEN-VALUE PROBLEMS AND Lp ESTIMATES 471

tlere k denotes the first positive eigen-value of the eigen-value problems (1.1), / the first eigen-

value of the eigen-value problem (1.3), and f is in a certain subset of L’(ft), 2

_
p < oo (this

will be specified later).

We call problems (1.1) and (1.4) the Biharmonic Dirichlet problems, (1.2) and (1.5) the
Biharmonic Neumann problems, (1.3) and (1.6) the Mixed Biharmonic problems. The significance
of these problems and their Lp estimates lies on the consequence that they are fundamental to

existence results for 4tA order non-linear elliptic problems which are treated by the authors in a

forthcoming paper [7].

The strategy of this paper is to first obtain LZ(fl) estimates for the weak solutions of (1.4),
(1.5) and (1.6) through classical Fredholm theory for compact operators and then extrapolate to

the L estimates for higher p by standard bootstrap techniques together with the use of estimates

from Agmon-Douglis-Nirenberg [8] and P. L. Lions [9]. Consequently, the weak solutions are

infact proved to be strong solutions in W4’p(t2) together with the W4’-estimates on u. In the

rest of this paper, we will simply focus our attention on (1.3) and (1.6). The proofs in the cases of

the other two types of problems are parallel to that of (1.3) and (1.6), we will therefore, omit the

details and only mention the necessary modifications for the other two cases whenever it is

necessary. This will be done in section 3.

2. THE BIHARMONIC PROBLEM.

DEFINITION 2.1. Let D3(A2 W0’2(fl). For a given f E L2(ft), u E D3(A2) is said to be a

"weak solution" of the problem

A2u f, on ,
u =0, on F, (2.1)

-b-n-n o, on r,

LA.- lXb Lf b (2.2)

for every b ( Dr(A2).

u W"(), p 2

tre. (Note that in this ce, even the wek-lution satfies the boundary conditions in the

sense of tre since it belon W’2 ()).

We observe that for u, v

(u,v), u v (2.3)

defines an inner pruct on Ds{A2) and we denote by V the Hilbert space obtained by endowing

Ds(A2) with the norm induced by the inner pruct {2.3):

I1 I1 I I’, v. (2.4)

Futhermore, II I1 on (=) i uivMent the ,2() norm on Da(A2) in view of Theorem 1.1

We now get me preliminary L2 timat and spectrum rults for (1.3) and (1.6).
THEOREM 2.1. Given f L2{), there exh extly one u V which a weak lution of(2.1), Futhermore,

I1 I1 C(N,)[ IIL) (2.)



42 C. P. GUPTA AND Y. C. Kh/ONG

and equivalently,

II IIwp(n) < C(N,)II/Ikn (2.5)

where C denotes different constant in (2.5) nd (2.6) but both depend on N and

PROOF. Since f ( L*(gt) can be considered ns an elemen of W-*’2(gt) whose ,ction on

@ ( B"2"’(gt) is defined by

/() =/./, (.)

nd since the W0’:(G) norm and he V-norm on Ds(2) re equivlen HHbert spe norms, we

hve by Ritz representation threm that there exis exactly one u V

(.,) . f()= f (2.7)

for every V whence the existence and uniquen rults. Estimate (2.5) now immediate

from (2.7) and Theorem 1.1 of [9].

Hence the threm.//

We now define a linear mapping Ls D(Ls) C V L2() by setting

D(L3) {u V: f L2() such that u is the weak lution of (2.1)

and for u D(L3),

L3u f. (2.8)

Hence, by Theorem 2.1, we have for u D(L),

[lu IIv C(N,)I3u IIL(a), (2.9)

or

II. ll,vo(a) S C(N,f2)IILsu llt,(a). (2.9)

The following theorem investigages the spectrum of the linear mapping L
defined by (2.8).

THEOREM 2.2. The spectrum of L3 is given by {0 p /zn counted
according to multiplicity and if {E, Ea, } are the corresponding eigen-spaces, then

(i) lim p,, +o,

(ii) dim E oo for every n,

(iii) {E,...E, forms a complete orthogonal system in L2(

(iv) Furthermore, if we let

Lu L3tl IIU U . D(La), (2.10)

then

L2(fl) (ker L ( R(L ), (2.11)

where R(L) denotes the range of L in L2(G) and ( denotes the direct sum so that

R(L (kr L) E in (2.11).

(v) Furthermore, for any f L2(f2)R(L), there exists an unique solution

u ( D (L ]) CI R (L) such that u satisfies

Lu Lsu Iu f
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and hence u is a weak solution of (1.6) in the sense that

f An. b plfu ff , / E V. (2.12)
Also we have the estimate

Ilu I[L*(n) -- _---- I[f [[L(n) (2.13)

PROOF. We first notice in view of Theorem 2.1 that, L-l L2(f)-. W02,2(f)
exists as a bounded linear mapping. We next assert that Ls- is a positive-definite
compact Hermitian operator on L 2(f).

To see L"1 is Hermitian, it suffices to show that for f, g E D3(A2
(L’/, g) (f L’g), (2.14)

since D3(A2 V is dense in L2(fl). Indeed, for f, g Ds(A2), let u --Llf and
v Lg, we have by the definition of Ls,

S sg
i.e.

or

(u, g)v (f g)lY(n) (v, S )v,

(Llf g)v (f g)L(fl) (f L-g)v. (2.15)

Applying now the left hand equality of (2.15) to S Ds(2) and LXg D3(2), we

get

(Lf, Lg)v ($, Llg)Lfl) (2.16)

Similly, the right hnd equality of (2.15) sl givm

(Ltf g)Ln) (LxY LXg)v (2.17)

and (2.14) follows immediately from (2.16) and (2.17).

The pitive definite property of L follows from the definition of L. Indeed, let

u Lf for f G L(). Then,

(Lf f )o) (u, f )Lqfl) Iu o

and

(LS f )n) O if/ u =0 iff f =0.

Finally, the mptn of L L) V C L2() follows immediately from

the compt embding ’2()C L). Invoking now the standard Fredholm

thry for mpt Hermitian opera, we that {P,,""" ,n,""" the

sptrum of Ls with {E,...,En,... the rrnding eigen-sp, we hve

(i) 0p2 with limn ,
(ii) dim E finite for every n, and

(iii) the sp {E,..., E,,...) form a mplete orthogonal system of subsp in

L().
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To prove (2.11), we see immediately, using Fredholm’s alternative that
R(L (ker L )l so that

L2() (ker L @ (ker L ) (ker L @ R (L).
The uniqueness of the solution u of (2.10) in D(L3)CI R(L) is another simple
consequence of the Fredholm theory. It now remains to prove estimate (2.13) (cf.
Remark 2.1).

Now let f ( L2([’/) CI R (L). There exists a unique solution u in D (L3) CI R (L)
satisfying

Lu Lau lu f (2.18)

i.e.

Au ttu f on f,
u O, on r,
ou O, on r,

in the weak sense of (2.12). It follows that

ffl IAu 12 P’f lu 12 ffu. (2.19)

Also, since u (/R(L)---(ker L)--- E, we have from the complete orthogonality of
the sub-spaces{E,...,En, }and0 < /l < < /n < that

Invoking (2.19), we have

and consequently,

fl. 12_< 1---2
(_,)f I/12,

thus estimate (2.13) follows and the theorem has been proved.//

REMARK 2.1. We note that at this point, our solution u in Theorem 2.2 is a

weak solution in W02’2(fl); but in Theorem 2.4 with f (/LP(f/), p

_
2, we will

eventually show that u is a strong solution in W4’P(f). Let us remark that the

spectrum of (1.6) is not related to the spectrums of (1.1)* and (1.2)* in any clear and

precise manner as the spectrum of (1.1) is related to that of (1.1)* (respectively the

spectrum of (1.2) to that of (1.2)*). Thus, it becomes an interesting topic to estimate

the /l,- .,/,. and to investigate their relationship with the spectrum of the

other problems.

One of the most well known approach is the method of the intermediate problem

(c.f. [6]) which consists of starting from a base problem (usually one with simplified

boundary conditions) and then approaching the problem of interest through a sequence

of intermediate problems (of which the spectrums are better known). As a result, one

can obtain lower bounds on/l pa, For instance, when f is a square, very

good estimates have been obtained in [3] for the first four eigen-values:
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13.294 _< Pl _< 13.37,
50.41 _/2 =/3

_
55.76,

112.36 <_ P4 <_ 134.56

Another approach is due to Fichera through the construction of intermediate
Green’s operators (c.f. [5]). This approach again leads to lower bounds on the

/1,..-,/n, for (1.3) when 12 is a square.

Finally, we have the decomposition method (c.f. [4]). In R 2, we can decompose
(1.3) into A Ill+ A lzl where

O_.__u O, on 012,
On

[2]u 2uzzv,t on 12,

O, on 012

then both eigen-value problems for A [1] and A [21 are solved by separation of variables,
say, when 12 is a rectangle.

The success of each of these approaches in getting explicit numerical estimates

usually depends on the geometry of 12. A result which relates the spectrum of (1.3) to

the spectrums of other problems in a most general setting is perhaps the following
theorem. This result is obtained via the intermediate problem approach using (1.1)*
as a base problem {for details refer to [3]).

THEOREM (2.2)*. If /tl,..-,pn,-.- are the eigen-values of the vibrating

clamped plate problem (1.3) and Xl,... ,Xn,.-- are the eigen-values of problem

(1.1)*, then the two spectrums are related to each other by the inequality,

k,
It is not the main concern for this paper to investigate such estimates. The above

remarks are included for the sake of completeness.

Now, we are ready to show that for p > 2, f ( L p (12) CI R (L), u in Theorem 2.2
in ft a strong lution nd derive the corrponding L estimate. But before we

go further, we need prent a result from Agmon-DouglNirenberg [8]. For rens
of simplicity, we shall only give statement of th theorem needed for the special
ce of this paper.

Consider the 4 order elliptic problem

O, 0,(; ) =0, o. r, (2.)

O, 0B; ). o, o. r,

where B(x; ,..., u) nd Bx; u) e lynomils in N, for
x F, of order m and m rpeetively. Furthermore, let denote ( ) and

P(0 t + + k + 2 (2.21)

be the rresnding chartertie polynomial of 2. We define the Agmon-Dougl-
Nirenberg "mplementary Boundary Condition" follows:

At any point x F, let n(x) denote the normal to F at x, and be any non-zero
real veer parallel to the boundary at the point x. We require that the polynomials,
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in r, By(z; + rn(x)), j 1,2 be linearly independent modulo the polynomial

(r--r/())(r r()), where r/() and r() are the roots of P( + rn(x)) with

positive imaginary parts (here r is a scalar). Next, we need the following theorem from

THEOREM 2.3. Let f ELP(12), p > 1, be given and let the complementary
boundary condition be satisfied. Furthermore, let (2.20) has at most one solution.

Then there exists a unique strong solution u for (2.20) satisfying the estimate

I1., I1.,..,(.) < C(N,12,,p)ll/IIL,{.) (2.2o.)

REMARK 2.3. Theorem 2.3 says that uniqueness of solution is sufficient for

solvability.

Equipped with Theorem 2.3, we are ready to prove the following theorem for

>2.
THEOREM 2.4. Let f ( LP(f)f E and u be the unique weak solution of (1.6)

in D3(A2) C Ea(Ea R(L)). Then u is infact the strong solution of (1.6)in W4’P(12)
satisfying the estimate

II. I1..,(.) < C(N,12,,,U,,)I[f I1,(.). (2.23)

PROOF. To show that u is a strong solution and to obtain higher L estimate

(2.23), we must fit the problem into the setting of Theorem 2.3. Therefore, we

note that the chrtertic polynomiu corrponding to Lu, Bu u, B2u
are rpectively

P(, )= : + + } +
B(x; u) (the constant polynomial 1), x F (2.24)

B; ) () + + "()N, e r

where n(x)-----(n(x),..., n,(x)) is the unit normal at g (//F. These polynomials

satisfy the complementary boundary condition of Theorem 2.3 when F is smooth.

Consider now the elliptic problem

A2v #flu + f, on 12,
v O, on F,

T- 0, on r,
(2.25)

where ] L’(12)n E, p k 2 and u e W0’2(12) are the same as that in Theorem

2.2. Obviously, ply + f G. L2(fl) and since /--0 is not an eigen-value of L:, we

have the uniqueness of solutions for (2.25). On invoking Theorem 2.3 with --0, we

get that there exists a unique strong solution v for (2.25) in L2(fl). But u being a

weak solution of (1.4) must also satisfy (2.25) in the weak sense. We conclude by

uniqueness of the weak solution in Theorem 2.1 that u ---v and hence u is infact a

strong solution in W4’2(f/) of (1.4) in view of Theorem 2.3.

Now we claim that u is also in L (12). Indeed using the Sobolev embeddings,

(i) W’(12)C_. C/-/v/(12) for q > -,
/vl

N
(ii) W"(12)CC__, L u--4(12) for q < --,

N
(iii) W’(12) CC__ L(12) <_ k < oo for q -,

(2.26)
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we can start with q 2 and argue inductively as follows:

Let f ( LP() and u ( L(Ct), without loss of generality assume p > q

_
2 and

that

A2u ffi#u + f on

u 0 on

_----ffi0 on
0n

(2.27)

By the previous argument, u ( W4’q{fl). For q > ___N we immediately have u ( LP(f)
4

due to the embeddings in {i) and (iii). If q < ___N but Nq > P, then u
4 N--4q

by embedding in (ii). Let us now assume that q < Nq < p, then we have
4’ N--4q

/lu + f E L ’-4(fl). We conclude by using Theorem 2.3, as before,

u ( W /v-4e(Ct). But

Nq _q_- 4q > 16 forq >2.
N-4q N-4q N-8

In view of this, after finitely many steps we must arrive at a stage at which u

with k

_
p.

Since, now, plu + f ( LP(f), we have by invoking Theorem 2.3 with / --0 that

u ( W4’(fI)and u satisfies

Ilu IIw,.,t) <- C(N,f’l,p )l[ptu + f
<_ C(N,fl,p,,O[ll IIL,t) + ILl II,ta)]

where we have used the well known norm inequality

Ilu IlL,to) <-- ll IIw,ta) + c(,N,,p )ll likuta) (2.2)

for arbitrary e > 0 when fl is bounded and p

_
2. Finally, using the L2(f) estimate

(2.14) that we alreaiy established in Theorem 2.2, we obtain estimate (2.20) and the

proof of the theorem is thus complete.//

3. L ESTIMATES ON THE BIHARMONIC DIRICHLET AND NEUMAN PROBL

As we mentioned in the introduction, the proofs of the L-estimates for these two

types of problems are just parallel to that of the mixed Biharmonic problems. In this

section, we will simply mention the necessary modifications and omit all the other

repetitive details.

First of all, analogous to definition 2.1, we define the weak and strong solutions of

Au f, on fl
u =0, on [’, (3.1)
Au O, on r,

and that of



ZX2u f on

-n O, on F, (3.2)

n
u- O, on

follows.

DEFINITION 3.1. t D(2) W2,2() W,2 (), for given f L2(),
u O(2) is sid to be a "weak-lution" of (3.1) if

u for (3.3)

for every D (2).

u W’(), p 2 said be ’trong-lution" of (3.1) if u satisfies (3.1)in
the nse of tre.

DEFlaTION 3.2. t D2(2) (u W2,2() =oU on ), for given

f L2(), u D2) is sid to be a "wek lution" of (3.2)

u" f (3.4)

for every D2(2).

u W’’ () ’%trong lution" of (3.2) if it stfi (3.2) (or (1.5)) in the sense

of tre.

Next, corrnding to the existence result and the Ltimte in part (v) of

threm 2.2, we hve the following nlogous threms.

THEOREM 3.1. t E be the eigen-spe of the flint eigen-vlue 1 of (1.1)*, for

y f L2() E, there exis an unique weak lution u D(2) E such

that u stfi (1.4) in the nse

ave ae mate

where k2 is the nd eigen-value of (1.1)*.

THEOREM 3.2. t E0 be the eigen-spe of the flint eigen-value 0 0 of (1.2)*,
for any f L2() E, there ex ,n unique we,k lution u Dd2) E such
that u atfim (1.5) in the sen of (3.4).

A, we hve the timte

I1 I1) 1I1) (3.7)

where A the fit non-zero eigen-value of (1.2)*.

Finally, we note that for (1.4), the chrtertic lynomils eorrponding to

Lu 2u, Bu u, O2u u re rpectively
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and for (1.5), the characteristic polynomials corresponding to
COu

are respectivelyL2u A2u’ Blu "n’ B2u cOn

2

B(; I ,N) n](z)l + 4- nN(z)N, z ( r, (3.9)

It is trivial to see that both (3.8) and (3.9) satisfy the complementary boundary
condition of Theorem 2.3.

Now we can proceed in exactly the same way as in the case of the mixed

Biharmonic problem to get the following theorems which are the analogues of theorem
2.4 for the other two types of problems.

THEOREM 3.3. Let f . L’(f)NE for p _> 2, and let u be the unique weak

solution of (i.4) in D(A2)CIE (as in Theorem 3.1), then u is infact the strong

unique solution of (1.4) in W4,p (I) satisfying the estimate

THEOREM 3.4. Let f E LP(f)CI E0-t for p _> 2, and let u be the unique weak-

solution of (I.5) in D(A=)C)E0-t (as in Theorem 3.2), then = is in fact the strong

unique solution of (1.5) in W4’ (f) satisfying the estimate

REMARK 4.1. If u in Theorem 2.4 belonged to Ds(A2) instead of Ds(A2) C)E:,
then estimate (2.23) may no longer hold. However, it is easy to see (by tracing back to

the original proof of Theorem 2.4) that u is still a strong solution and it satisfies the

following weaker estimate

This is due to the fact that we no longer have estimate (2.13) and u is not unique in

this case. Similar remarks apply to Theorem 3.3 and 3.4.
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