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ABSTRACT, A classical Fock space consists of functions of the form,

L
2

[R
3q

where o C and q ), q > I. We will replace the q q > with

q-symmetric rapid descent test functions within tempered distribution theory. This

space is a natural generalization of a classical Fock space as seen by expanding

functionals having generalized Taylor series. The particular coefficients of such

series are multillnear functionals having tempered distributions as their domain.

The Fourier transform will be introduced into this setting. A theorem will be

proven relating the convergence of the tranform to the parameter, s, which sweeps

out a scale of genralized Fock spaces.
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I. INTRODUCTION.

Rapid descent test functions, S(Rq), and their dual tempered distributions,

S’(Rq), are excellent spaces to do the analysis of the Fourier transform (Bogolubov

and Logunov [I], Constantinescu [2], Freidman [3], Gelfand and Shilov [4], and

Lighthill [5]). The classical Fourier transform analysis examines spaces having test

functions defined on a finite number of independent variables. By this we mean the

independent variables of a rapid descent test function, @(tl,...tq), belonging to a q-

dimensional Euclidean space. This paper will indicate a method that will enjoy the

property that the number of independent variables becomes infinite, that is in some

sense the dimension, q . The need for this analysis is essential in advanced

physics. An infinite number of particles are described by state vectors in a Fock

space. The classlcal results are developed in a Hilbert space. Traditionally the

Lebseque ntegrable functions, LP(Rq), are implemented in the construction of a direct
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sum of these spaces. However, when you want to describe a frequency o a parLice Lhe

Fourier transform must be studied. This presents a significant problem since the
-2Itw

kernel, e does not belong to any LP(Rq) space. This kernel problem is solved

in tempered distribution theory (Constantlnescu [2], Gelfand and Shilvo [4], Llghthill

[5], and Zemanian [6]) but the infinite number of variables problem still remains.

This paper will implement tempered distributions together with a holomorphlc

functional theory developed in Schmeelk [7-10] to solve the infinite number of

variables problem.

We briefly recal in S(Rq) and S’(Rq) the Fourier transforms are respectively

defined as

and

(F)(Wl...w) A Rq exp- 2[tlW + + t w (t ...tq)dt ...dtq q q q

<F F(wl...Wq) (tl...t > A < F(Wl...Wq) F((tl...t )) >q q

for all (tl...tq) a e S(Rq) and all F(Wl...Wq) e S’(Rq). The advantages of S(Rq)
and S’(Rq) are many but the fundamental result is that the Fourier transform exists a

homeomorphism and has the appropriate derivative multiplication property. This

paper will not include a survey of the many Fourier transform properties which are

contained in Constantlnescu [2], Friedman [3], Zemanian [6], Bracewell [II], Gonzalez

and Wintz [12], and Papoulis [13].

We will extend the Fourier transform into generalized Fock spaces. The principle

result will be the existence of the transform in the scale of Frechet spaces

pB U sBr Fp’ and its corresponding dual (rPB) A comprehensive examination ofs
these spaces are contained in Schmeelk [7-10]. We will only review these spaces in

sections 2 and 3.

pB
p,sB2. THE SPACE, F r

s I

For each s the space rP’SB(p > I, B {Bi}i=O Bi > Bj J > i), is called an

infinite dimensional Fock space. Then p and Bi, i 0 are all real numbers. These

spaces are topological spaces of complex valued functlonals on S’(R; ), the space of

complex valued distributions. The functionals which are members of rp’sB are all

C(S’(R);). The complex or real valued functionals enjoy similar properties. The

PB
real valued functlonals which are members of r are developed in Schmeelk [8].

We also require if e rp’sB, then

O(x) a x
q . a ix x]

q=O q q=O q

where a
0

e and aq, q )1 are q-multilinear symmetric continuous functlonals on the

space, S’(R)x...xS’(R), (q copies, q ) I) to C. We identify for each e rp’sB the
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associated Fock state vector,

a0
a

++ (2.2)

aq

We equip our infinite dimensional Fock vector space with the following increasing

sequence of norms:

where
m (sB)q

l/p

m 0, I,... (2.3)

with

and

where

aq x
q x e S (R), m 0,

suI J<x,>j 0 e S(R), m 0,1...

(2.4)

(2.5)

Ii illllllm m l’"sup M (t ,tq)jDa(t -tq) (2.6)
0 < al m

(t tq) e Rq

M (t ,tq) A [(1+(2tl )2)
m

(1 + (2Cq) 2)]m (2.7)

and

D= +"’+%

The norms defined in expression (2 6) using the functions M (t ...,t so
m I’ q

defined generate a sequence of norms equivalent to the sequence of norms Implementing

the functions, M’m(t t )--
q q

It was proven in reference [I0] that each real valued functional, ,sB, has

a kernel representation which remains valid for complex valued functlonals. This

representation is as follows,

lq(t

(2.8)

where
’u
$^ a0 and (t t are

.q q
functions, S+(Rq) satisfying,

III (R)IIIA II  _qlimq!
(s B)

where
m m

symmetric complex valued rapid

lip

m 0, I,...

descent test

(2.9)



434 J. SCHMEELK

0 al Cm

i Cq

M(t. t)l Da )’Im q -(tl"’’t q

(t t c Rq
q

The representation for given in expression (2.8) enjoys the standard square summable

property often times postulated for Fock functlonals as seen by the following theorem.

THEOREM 2.10. Given a c rp’sB its kernel representation given in expression

(2.8) satisfies

II *1
q=IRq q

Clearly the constant, 2PROOF does not contribute to the convergence

problem of the result of the theorem. Also since e rp’sB, then by the requirement

{C
m

given in expression (2 9) there must exist a sequence of positive constants, m=O’
such that

C (sB)q
< m m

fr all q and

qO

qlRq

qo
m q (t t dtl"’’dtq q!I/P(sBm)q

q=l M2m q

q! I/P(sBm)q

q=l q[ 2/P(sB )q
m

qo II qllmq, ’zp IIm m" )q I/pq=l (sB q!
m

"o l,qll "q(SBm)q
[ m

m q=l q!

qo Cmq(sBm)2q
m q=1 q!

Since expression (2.11) converges for any q0, the result follows.
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3 THE FOURIER TRANSFORM IN rpB.
BDEFINITION 3.1. The Fourier transform on e is defined as follows,

exp[-2 i tlWl]l(tl)dtl
R

exp[-2 i(tlWl+...+t w )]q(t tq)dt dtqq q I’
Rq

LEMMA 3.2. () is well defined for every e rp’sB and moreover. f exp [-2 i(tlWl+...+t w )]q(t tq)dt ...dr
q q l’ q

q=l Rq

BPROOF. e implies @ e rp’sB for some s I.

We then have

f[exp 2w i [tlw1/.../t w
q-1 Rq

q q q(t tq)dtl-..dtql < (R).

, ,o+lZ
.,t

/ ’Ml(’t ,tq) I’ q I""’ q
Rq

dt .dtf M (t tq) q
Rq

.....

,z/p )q"ql ’ql lzq, (SBm
1/p )qq-1 q!

m

q(sB )q
1,ol / #1#(R)Ill;. 7. m <,

m q-1 ql/p
THEOREM 3.4. e Fourier transform is a linear continuous transfortion on to

PROOF Since rpB U rP,SB
s I

we consider the Fourier transform on the space,

S B
m

following,

IIs )dr dtqllmq, tlp
qq I’" q

Rq

m (s ’Bm)q
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sup Mm(wl Wq
q

Oai m
I q

(w w )e Rq
q

{D exp([-2,t(tlwl+...+t w )](t ,tq)dtqq I’"
Rq

(s ’B )q
m

-dtqlq!

sup Mm(wl,...,w
q q

0 m

i q

Rq(w w e
q

IRq ...(-2it qexp[-2i(tlWl+...+t w )](t .,tq)dt .dt {q’q q q l’’" 1"" q
1/p

(s ’B )q
m

sup

M (w w R Mm(t tq)l(t .,t )Idt dtq 1/p
m I’ q q I’ I"" q I’’"

0= m

i cq
(wl,***,wq) e Rq

(s ’B )q
Ill

f M2m(tI tq){O(t tq){dtl...dtq
sup
q

i <q

(sBq
q{ 1/p

M2m+l(,t ,tq)f (t tq) {+(t tq){dtl...dt
Rq

q

sup
q (s ’B )q

0at m
i q

M2m+l(t ,tq){ +(t tq){ qq!l/p
sup
q (s ’B )q

0 ql m
m

i q
(t tq) Rq

q.’ 1/p
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sup
q

M2m+l
q

(t tR) (t t i) lq! I/P(sB2m+l) q
)q (s ’B )q(s B2m+l m

0(ai (m

<i <q
(t tq) e Rq

1/p

sup
q (SB2m+l)q

SB2m+1
s’B (3.5)

Noting that B2m+l < Bm and s’ > s implies expression (3.5) is finite.

4. THE FOURIER TRANSFORM ON (rPB)
In a previous paper [9], it was shown that the dual of rp’sB

the union of sets of the form,

denoted (rp’sB)’ is

rp,sB
-m {(F0’ F1 ,Fq ): F

0
e C (4.1)

The generallzed Fock dual functionals described in expression (4.1) can also be

considered as sequences where the Fq are symmetric tempered distributions all having

rank < m. We also note if @ e rp’sB and F e (rP’SB), then the evaluation of F

at is denoted as

< < F, > > A I Fq, q >.
q--O

EXAMPLE. 4.3 All the sets, (rp’sB

functional,

(4.2)

), contain the generalized Fock Dirac

6 <=ffi> (4.3)

where 6 (R)6(R) 66 is the tensor product of q copies of the Dirac delta functional

[3]. We immediately verify that

[I Fqll-m(sBm)q q!-I/p

II "..." ll-,,(SBm)q q!-l/P

(sB)q q!-I/p < -.
m
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DEFINITION 4.4. The Fourier transform on the spac. (rPB) is dFned a’

< < F, > > =A << F,* > >"

EXAHPLE 4.4. We compute the Fourier transform of

(k)(t T) <==>

6(k) (tl-Zl)

6(k) (t I_ Zl (k) (t2_ z2

(k) (t zl (k)(t
q

(4.4)

It suffices to consider the qth component,

< 6(k)(t zl) 6 6 (k)(t
q

=A < 6(k)(t Zl 6 66(k)(t
q q),(w1...Wq >

< (k)(t TI 6... 6 (k)(t
q Zq) exp[-2rl(Wlt1+...+w t )]@(Wl...wq)q q

Rq

dWl...dw >q
dk+k+.., k=(-l)qk<(tl-Tl 6...6(t -q) f exp[-2rl(Wltl+...+w t )](w ..Wq)q .----’- ok q q
dtl...dt Rq

dWl...dw > (4.5)
q

q (2IWI)k .(2rlw )kexp[-2rl(Wlt +..+w t )]
q q q

Rq
(w Wq )dw dWq

)k )kexp [-2i(2rlw (2rlWq (w zl+...+Wq Zq @(Wl...Wq )dWl...dWq
Rq

<(2rlw1)k -2IwI’1 (2,iw2)k -2rlw2T2... )k
-2iw T

e 6 e 6(2rlw e
q q

@(Wl...Wq)>q

-2iw z
where (2rlw)k n n

e (1 n < q) is

distribution In summary we have

6(k (t_ z) ++

being considered as a regular

)k
-2 rlw Zl(2rlw e

)k ,lw2)k q q2tw (2 (2lw)k e-2i[wl:l+*+

tempered

(4.6)
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It s clear that any q’th entry in expression 4.6) does not belong to L2(Rq) since

clearly

)k .(2lw )k -2i[wl I+’’’+wq qJi(2iw q
e

[(2I) (2w)]k
q

is not integrable over Rq.

However, the expression given in line (4.5) does belong to the (pB), space since

-1/p

q=0 q

l Jl(2Wl)k ...(2Iiw )k e
q=O q

I(sB )q q!-l/p < (R).

q=0 m

-2I [wl TI’" "Wq q]l J-m(SSm)qq!-I/p

EXAMPLE 4.7. In a similar computation it can be shown that

sB
and again the Fourier transform is a member of every set, ). It should be noted

that other spaces such as distributions of exponential growth [3] offer some technical

achievements that increase the space of Fourier transformable functions. However, we

wanted to relate our results to our specialized scales of Frechet spaces developed in

Schmeelk [7-10] and Schwartz [15].

REFERENCES

I. BOGOLUBOV, N.N., LOGUNOV, T.T. and TODOROV, I.T., Introduction to Axiomatic

uantum Field Theory, W.A. Benjamin, Inc., Massachusetts, 1975.

2. CONSTANTINESCU, F., Distributions and their Applications in Physics, Pergammon
Press, New York, 1980.

3. FRIEDMAN, A., Generalized Functions and Partial Differential Equations, Prentice-

Hall, Englewood Cliff, N.J., 1963.

4. GELFAND, M., SHILOV, G.E., Generalized Functions Volume 2, Academic Press, New

York, 1968.

5. LIGHTHILL, M.J., Fourier Analysis and Generalized Functions, Cambridge

University Press, England, 1964.

6. ZEMANIAN, A., Distribution Theory and Transform Analysis, McGraw Hill Book Co.,

New York, 1965.

7. SCHMEELK, J., An Infinite Dimensional Laplaclan Operator, J. Differential

Equations 36(1) (1980), 74-88.

8. SCHMEELK, J., Applications of Test Surfunctions, ppl. Anal. 17(3) (1984), 169-

185



440 J. SCHMEELK

9. SCHMEELK, J., Infinite Dimensional Parametric Distrlbutlons, Appl. Anal. 24
(1987), 291-317.

I0. SCRMEELK, J., Infinite Dimensional Fock Spaces and Associated Creation and
Annlhflatlon Operators, J. Math. Analysis and Applications 134(2) (1988),
III-141.

II. BRACEWELL, R., The Fourier Transform and its Applications, McGraw Hill, New
York, 1986.

12. GONZALEZ, R., WINTZ, P. .Digital Image Processfn$, Addlson-Wesley Pub., Co.,
Massachusetts, 1987.

13. PAPOULIS, A., Signal. Analysis, McGraw-Hill Book Co., New York, 1977.

14. CARMICHAEL, R.D., Distributions of Exponential Growth and their Fourier
Transforms, Duke Mathematical Journal 40 (1973), 765-783.

15. SCHWARTZ, L., Theorle des Distributions, Hermann, Paris, 1966.

16. COLOMBEAU, J.F., Some Aspects of Inflnite-Dimensional Holomorphy in
Mathematical Physlcs Aspects of Mathematics and its Appllcatlons, J.A.
Barroso, editor, Elsevier (1986), 253-263.

17. COLOMBEAU, J.F., Differential Calculus and Holomorphy, North Holland Mathematical
Studies, 64 North Holland Pub., Co., New York 1982.

18. COLOMBEAU, J.F., New Generalized Functions and Multiplication of Distributions,
North Holland Mathematical studies., 84, North Holland Pub. Co., New York
1984.

19. MANOVKIAN, E.G., Renormalizatlon, Academic Press, New York, 1983.

20. MARKOV, K., Appllcation of Volterra-Welner Series for Bounding the Overall
Conductivity of Heterogeneous Media I. General Procedure, Slam J. Appl. Math.
47 (1987), 836-870.

21. OBERGUGGENBERGER, M., Generalized Solutions to Semillnear Hyperbolic Systems, Mh.
Math., 103, (1987), 133-144.

22. OBERGUGGENBERGER, M., Weak Limits of Solutions to Semillnear Hyperbolic Math.
Ann., 274 (1986), 599-607.

23. OBERGUGGENBERGER, M., Products of Distributions, J. rue dle Reine Avg. Math.
265 (1986), I-II.

24. OPPENHEIM, A., SCHAFER, R.W., Digital Signal Processing, Prentice Hall, Englewood
Cliffs, N.J., 1975.

25. COLOMBEAU, J.F., Elementary Introduction to New Generalized Functions, North
Holland Mathematical Studies, 113_____, North Holland Pub. Co., New York, 1985.

26. PERSSON, J., Invariance of the Cauchy Problem for Distributional Differential
Equations, Proceedings of the 1987 Generalized Function Conference at
Dubrovnlk, Yugoslavia, Dellen Pub., Co., 1988.

27. PILIPOVIC, S., Structural Theorems for Periodic Ultradlstrlbutions, Proceedings of
the A.H.S., 98(2) (1986), 261-266.

28. PILIPOVIC, S., On the Quaslasymptotlc Behavior of the StieltJes Transformation
of Distributions, Publication de L’Instltut Mathematlque, 40 (1986), 143-152.

29. RAJU, C.K., Products and Composition with the Dirac Deta Function, J. Phys. A:
Math. Gen. 15 (1982), 381-396.

30. COLOMBEAU, J.F., A Multiplication of Distributions, J. of Math. Ann. and
Applications 94(I) (1983), 96-115.

31. COLUMBEAU, J.F. and ROUX, Le, A.Y., Generalized Functions and Products
appearing in Equations of Physics, preprint.

32. COOKE, K., WIENER, J., Distributional and Analytical Solutions of Functional
Differential Equations, J. of Math. Anal.sls and Analysis and Applications
98(I) (1984), 111-129.

33. DESPOTOVIC, N. and TAKACI, A., On the Distributional StieltJes Transformation,
Internal. J. Math. and Math Scl. 9(2) (1986), 313.-317.

34. DIRAC, P.A.M., Principles of Quantum Mechanics, Oxford University Pressngland
1967.



FOURIER TRANSFORMS IN GENERALIZED FOCK SPACES 441

35. SCHWARTZ, L., Impossibilte de la Multiplication des Distributions, Comptes
Rendus de L’ Academle des Science, 239 (1954), 847-848.

36. TODOROV, T.D., Sequential Approach to Colombeaus Theory of Generalized Functions,
International Center for Theoretical Physics IC 126 (1987), Trieste, Italy.

37. VELO, G., WIGHTMAN, A.S., Editors, Renormallzatlon Theory, Proceedings of the
NATO Advanced Study Institute, International School of Mathematical Physics
in Sicil Italy, August 1975, D. Reldel Pub. Co., Boston, 1976.

38. VLAADIMIROV, U.S., DROZZINOV, Y.N., ZAVIALOW, B.I., Talberlan Theorems for
Generalized Functions, Kluwer Academic Pub., Boston, Mass., 1988.

39. LIVERMAN, T.P.G., Generalized Functions and Direct Operational Methods, Prentice
Hall, Englewood Cliff., N.J., 1964.

40. ZEMANIAN, A., Generalized Integral Transformations, John Wiley & Sons, Inc.,
New York, 1968.


