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ABSTRACT. A.G. El’kln [I] poses the question as to whether any uncountable cardinal

number can be the dispersion character of a Hausdorff maximally resolvable space.

In this note we prove that every cardinal number I can be the dispersion

character of a metric (hence, maximally resolvable) connected, locally connected

space. We also proved that every cardinal number 0 can be the dispersion

character of a Hausdorff (resp. Urysohn, almost regular) maximally resolvable space X

with the following propertles: I) Every continuous real-valued function of X is

constant, 2) For every point x of X, every open neighborhood U of x, contains an open

neighborhood V of x such that every continuous real-valued function of V is constant.

Hence the space X is connected and locally connected and therefore there exists a

countable connected locally connected Hausdorff (resp. Urysohn or almost regular)

maximally resolvable space (not satisfying the first axiom of countability).
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I. INTRODUCTION.

In the sequel we denote by 0 the first infinite cardinal number and by the

first uncountable cardinal number.

For a topological space X, the dispersion character A(X) of X is the least among

the cardinals of nonvold opens sets. The space X is called maximally resolvable

(Ceder [2]) if it has isolated points or X is the union of A(X)pairwise disjoint

sets, called resolvants each of which intersects each nonvold open set in at

least A(X) points.

A topological space X is said to be I) Urysohn, if for every two distinct points

x,y of X there exist open neighborhoods V,U of the points x,y such that V N U ,
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2) Regular at a point x, if for every open neighborhood U of x, there exists an open

neighborhood V of x such that V c_u. 3) Almost regular, if there exists a dense subset

of X at every point of which the space X Is regular.

Let X be a set and let {yi: i e I} be a family of subsets of X with each

having a topology. Assume that for every (i, J) e I I, both l) the topologies of

YJ agree on YIOYJ and 2) each yl yJ is open in yl and in YJ. Then the weak topology

in X induced by {yI: i e I} is T {U: UOY
I

is open in yi for every i I}.

Every metric space is maximally resolvable, (W. Sierpldskl [3]). Every space

satisfying the first axiom of countability is, also, maximally resolvable, (J.C. Ceder

[2]).

2. MAIN RESULTS.

THEOREM 2.1. Every cardinal number ) I can be the dispersion character of a

metric connected, locally connected space.

PROOF. Let (X,d) be a metric connected locally connected space wlth dispersion

caracter I" We first construct a sequence of sets X0, XI,...Xn,..., then we define

a metric d* on the set Y IJ X and we prove that (Y,d*) is the required space.
n

For an arbitrary point x of X we set

x
0

{x}.

Ne set Y(x) X\{x} and we consider the set

x {x) u u yi(x)
rE11

where I is an index set such that II and yi(x) is the i-copy of Y(x) attached

to the point x. Assume also that Yi(x)l N YJ(x) for every i,J e I I, i J.
$Imilarly the set X2 is defined as

X
2

X0
U ({x} U

U
x e X X

0
t e 12

(x))

where 12 is an index set such that I121 , Y(x) X\ {x} and yi(x) Is the i-copy of

Y(x) attached t the point x of XI\XO. Assume also that Yi(x)oYJ(x) for every

I,J I UI2, i J and that Yi(x) flYJ(y) for every x y, i,J I IU 12
Using induction, the set Xn is defined as

U Yi(x)), nffi3,4 ....x u
n Xn-2 x e X i I

n_l \Xn_2 e n

where In is an index set such that llnl N Y(x) X\{x} and yi(x) is the i-copy of

Y(x) attached to the point x of Xn_l\xn-2" (It should be observed that to every point
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x of Xn_!\Xn_2 are attached M palrwlse disjoint copies of Y(x)). Assume also that
n

Yi(x) NYJ(x)" for every I,j e U Ik, i J and that yi(y) N yj(y)" for
n k=l

every x # y, i,j e U Ik-

We consider the set Y U X on which we define a metric d* as follows: Let a,b
n

n=l
be two arbitrary points of Y and n,m be the minimal integers for which

a e Xn, b Xm. Suppose n < m and let Yi(an_I), i In, an_le Xn_l\Xn_2 and

yJ (bin_ I), j e Ira, bm_ e Xm_l\Xm_2 be the copies of Y(an_I) and Y(bm_I), where the

points a,b belong respectively. The space YJ(bm_I) U {bin_ I} is homeomorphlc to the

space (X,d). The point bin_ of X \Xm_ belongs to a copy yk(bm_2) k e Ira_m-I 2

bin_2 e Xm_2\Xm_3 and the space yk(bm_2) U {bin_2} is hoeomorphic to (X,d). Continuing

in thls manner we find a point bm_(m_n)=bn belonging to Xn\Xn_ I. If

a b then we define
n

m-n-I
d*(a b) --d(b b + d( ).

m-I bm-i’bm-(i+l)

If a b then continuing the above process in a "parallel" way for both points a,bnn

we find a finite number of points an-l’ an-2’ "’’an-k and a finite number of points

bn_l, bn_2...bn_k such that an_k --bn_k for some k, k n-l. In this case we

define

d*(a,b) d*(a,an_k)+d*(b,bn_k).
It is easily verified that d* is a metric for the set Y and that (Y,d*) is a connected

locally connected space with dispersion character M.

COROLLARY 2.1. Every cardinal number )N
0

can be the dispersion character of a

Hausdorff (resp. Urysohn, almost regular) maximally resolvable space Y with the

following properties

I) Every continuous real-valued function of Y is constant.

2) For every point a of Y, every open neighborhood U of a contains an open

neighborhood V of a such that every continuous real-valued function of V is constant.

PROOF. Let (X,) be a countable connected, locally connected Hausdorff (resp.

Urysohn, almost regular) space (lliadis and Tzannes 4]). We construct the set Y as in

Theorem 2. above and we consider the space (Y,z) where T is the weak topology induced

by the (palrwlse disjoint) spaces yi(x) where x e Xn\Xn_ i e I llnl -n’
n--l,2,...

It can easily be proved that Y is Hausdorff (resp. Urysohn, or almost regular)

having dispersion character M.

In order to prove that Y is maximally resolvable we fix an index I for every
n

n--l,2,..., and we consider the sets
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and

Dla__ ya(x ), a e I

a Ya(xi) a e ID2--
x
i

e X X0

D a-- Ya(xi), a e I
n n

x
i

e Xn_l\Xn_2

D-- U Da
n

n=l

We set D {Da: a e I n 1,2,...,} and we observe that D consists of palrwise
n

disjoint dense sets each of which intersects every open set in points and whose

union is Y\{x}, hence Y\{x} is maximally resolvable and therefore Y is maximally

resolvable.

We now prove that every continuous real-valued function f of Y is constant (and

hence Y is connected). Let a be an arbitrary point of Y and n be the minimal integer

for which a e X. The point a belongs to a copy yi
n (an_l), i e In attached to the

point a of The pace yi
n-I Xn_l\Xn_2 s (an_l)U {an_l} is homeomorphic to X and since X

is countably connected it follows that f(yi(an_1) U {an_l} c. Similarly, the point

a belongs to a copy YJ(an_2) j In_ attached to an_2 of Xn_2\Xn_3 and
n-I

f(YJ(an_2) U {an_2}) c.

It is obvious that the point an_(n_l belongs to yk(x), where k E I and

{x} X
0
hence f(yk(x)U {x}) c and therefore f(a)=f(x) c, for every point a of Y.

Similarly is proved property (2) (and hence Y is also locally connected).

COROLLARY 2.2. There exists a countable connected locally connected Hausdorff

(resp. Urysohn or almost regular) maximally resolvable space (not satisfying the first

axiom of countability).

PROOF. Let Z be a countable Hausdorff (or Urysohn space not satisfying the first

axiom of countability. We first embed Z in a countable Hausdorff (or Urysohn) almost

regular space X [4, Corollary I]. Then, we construct the space Y as in Corollary 2.1

above considering II=n 0 for every n--l,2, Since Z c_ X c_y it follows that at

every point x Z the space Y does not satisfy the first axiom of countability.
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