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ABSTRACT. Let P denote the set of all functions analytic in the unit disk

D {z lllzl < 1} having the form p(z) + s pkzk with Re{p(z)} > O. For a > O, let
k--1

Na(p) be those functions q(z) i + S qkzk analytic in D with s. Ipk -qk I.< 6. We
k=l k=l

denote by P’ the class of functions analytic in D having the fore p(z) 1 + pkzk
k=l

with R [zp(z)]’} > O. We show that P’ is a subclass of P and detemine a so that

N(p) = P for p P’.

KEY WORDS AND PHRASES. Functions having positive real part (Carathodory class),
subordinate function, a-neighborhood, and convolution (Hadamard product).
1980 AMS SUBJECT CLASSIFICATION CODES. 30C60, 30C99.

I. INTRODUCTION
Let denote the class of functions f analytic in the unit disk D {z Ilzl < 1}

with f(O) 0 and f’(O) i. For f(z) z + T. akzk in Z and a > O, let the
k=2

a-neighborhood of f be given by Na(f) {g(z) z + s. bkzk _Z klak bkl,< 6}.
k=2 k-2

For h(z) z, Goodman [I] has shown ihat Nl(h) = S* where S* denotes the class of

univalent functions in /z which are starlike with respect to the origin. St. Ruscheweyh

if f(z) z + E akzk lies in C, where C denotes the class ofproved that convex
k=n+l

univalent functions in , then Na(f)= S* for an 2-2/n. Fournier [3] found that if

C were replaced by

=(g cllZg:’Iz)l <lgz) z D}

and S* by

T D}g(z)

then Na (f)= T for a n e-1/n. Brown [4] extended the results of St. Ruscheweyh and
n

Fournier and provided simpler proofs. We shall focus on a class of functions directly

related to S* and to other classes of univalent functions. Let P denote the class of
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p(z) 1 + . pkz
k with Re{p(z)} > 0 forfunctions analytic in 1 having the form

k=1
zl < I. This family is usually called the Carathodory class. For f in Y, recall

that f S* if and only if p(z) zf’(z)/f(z) lies in P.
Let P’ denote the class of functions analytic in zl < 1 having the form

p(z) + Z pkzk with Re{[zp(z)]’} > 0 for Izl < I. In this paper we shall define
k=1

a neighborhood of p P’ and determine ; > 0 so that N(p)= p.
2. PRELIMINARY RESULTS.

We begin by defining P and P’ in terms of subordination. Recall that g is
subordinate to h, written gh, if g(z) h(w(z)) where w is analytic in

1+zIzl < I, w(O) 0 and lw(z)l < i for Izl < I. Since has positive rea] part in
zl < 1, is univalent, and is when z O, it is not difficult to show that

1+zp P if and only if p(z) (2.1)

and that

1+zp P’ if and only if [zp(z)]’- . (2.2)

One can also show that P’= P. For according to (2.2), if p P’ then

1+z[zp(z)]
and thus we have

l+z

Since is convex and univalent, we can apply a lemma (see Brown [5], p. 192) to
obtain

from which it follows that

l+zz(z)
iZ

p(z) " l+z

Hence, by (2.1) p P and P’c P.
Now let us establish a criterion for a given function to belong to P. By (2.1)

1+z l+zq c P if and only if q(z)-. Since is univalent, then q c P if and only if
iO

q(z) + e
iO for O< O< 2 and Izl < I. That is,

1 -e

q P if and only if (1 eil))q(z) (1 + eiE) O, (2.3)

for O< B< 2, Izl < 1.

We can express (2.3) in terms of convolutions. Let f and g be analytic in the
kunit disk D. Recall that if f(z) ; a.zk and g(z) ; b,z then the convolution

k=O K k=O K

(or Hadamard product) of f and g, denoted by f-g, is

f,g akbkzk.k=O
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Thus, (1 eiO)q(z) (1 + eiQ) can be written as

(I- eiO) [ 1_i-* q(z)] -(i + ei@) * q(z)

(l-eiQ eiO )1 (i + * q(z).

Let hO(z) be defined by

[1 eiO iO 1ho(z)
2e iB’

L
1 Z (1 + e

J"
Then it follows that he(O) and for O< 0 < 2, Izl < 1, q P if and only if

he(z) , q(z) O.
3. THE MAIN RESULT.

(2.4)

Thus,

LEMMA I. If p c P’, then z(p*hO) is univalent for each 0 < 0 < 2.

PROOF. Fix O< O< 2. Then

[z(p,ho)]’ (1 e iO) eiO

el Q
p(z) (1 +

I I + eiO 1 e
iQ- zp(z)

eig ’i(}
1 e

i [ (zp(z)), i + eiO] ei@ -iO=- i eiO
(I e (3.1)

By definition of P’, the range of (zp(z))’ for Izl < i lies in Re(z) > 0 and that

1 +ei8
of iO lies on the imaginary axis. Thus, we can choose so that

1 -e
Re{eiEz(p*hB)(Z)] ’} > 0

for Izl < 1, namely arg{-(1 eiB)-leiO}. By the Noshiro-Warschawski Theorem

(Duren [6], p. 47), z(p*ho) is univalent for each O, 0 < 0 < 2.

’I ]- r for Izl r< I, O< @< 2.LEMMA 2. If p P’, then [z(p*he)] > +
PROOF. Using expression (3.1) for Iz(P*h()l ’r, we define F(w) e-i@(1 ei@)

(l+e
iO ) 1+reit

1 e
i( w where w

1 re1"t 0,< t,< 2. Now F(w) may be rewritten as

F(w) e’iO{ (1 + eiB) (I ei@)w}, 0 < @ < 2.

F(w) 1 -w iO+ el+w

We define a 6-neighborhood of p for p P.

For any p(z) 1 + z pkzk in P and 6 >, O, the S-neighborhood of p,DEFINITION.
k=1

denoted by N(p), is

N(p) q(z) 1 k:lqkz kE=llPk qk .<

Our main result is the following theorem.

p(z) 1 + E pkzk belongs to P’, then N6(p)=P, where 2 In 2THEOREM. If 1
k=l

.3862944. This result is sharp.

We need several leas.
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11 + wile iO reitl
11 +wlll- rei(t-o)I

> (.i r)I1 +

Since Ii + w’ + +reitlreT I]2Ireit > +2 r it is clear that

1 rIF(w)I > 2 l+r"
Since p E P’ and (3.1)holds, by letting w [zp(z)]’ we get the desired inequality.
That is

[z(p*h8 1 $ r
The lena is proved.

LEMMA 3 If p P’ then p,hoI 6, where 6 n 1t dt 2 In 2 1.

PROOF. Let p P’. Then by Lemma i, z(p,h8) is univalent. For fixed 0 < r < I,
choose Zo with IZo r such that

mini z( *h8Izi
)1 IZo(P*h )(zo)l.

Since z(p*hs)is univalent, the preimage L of the line segment from 0 to Zo[(P*hs)(Zo)]L.
is an arc inside ]zl # r. Hence, for lz] r we have

Iz(p*ho)l > IZo(P*ho)l
[z(p*%)] Idzl

> fOr [z(p*hla)] ’lldzl-

Accordingly, we apply Lemma 2 to get

[P*hla] (z)l > E [z(p*hla)] ’1 dzl

1/or l’tdt>- l+t

21n (I + r) 1.r
2The function g(r) -In (1 + r) I is decreasing for r > 0 if g’(r)

-2 In (I + r)+ r’(’l’2r} < O. It is not difficult to show that r (I + r) In (i + r)

,< 0 for r > O, from which it follows that g’(r)< 0 for r > O. Hence

p*hol > 2 In 2 i.

This completes the proof of Lemma 3. Now we may prove the theorem.
THEOREM). Let p(z) i + pkzk E P’ and let a be as in Lema 3. ePROOF (OF

k=1
want to show that every q N(p) belongs to P, where q(z) 1 + qk is an arbitrary

k=l
but fixed function in Na(p). Hence, Ipk qkl ,< a. Observe that

k=l

hO*ql (ho*P) + ho* (q P)I
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> Ihg*pl Ihg*(q P)I
ig

-e k

k=l 2 (qk Pk )z

> a- z q k pk > O.
k=l

Therefore, ho*q 0 for Izl < 1. By (2.4), it follows that q P. Consequently,

N(p)
l+zNow we prove that the result is sharp. Let p(z) be defined by (zp(z))’ 12 2 In (i z) + 6zThen p(z) =-I - In (I z). Now let q(z) p(z) + z:-I

Clearly, q N(p). However, as z/ -1, then q(z)-I + 2 In 2 q(-1).
Therefore, if > 2 In 2 I, then q(-1)< 0 and consequently Re q(z)< 0 for z near

-1. This contradicts Re q(z) > 0 for Izl < i. This completes the proof of the

theorem.

REFERENCES

1. GOODMAN, A. W., Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc.
.8_8 (I 957 ), 598-601.

2. ST. RUSCHEWEYH, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 8_1
(1981), 521-527.

3. FOURNIER, R., A note on neighborhoods of univalent functions, Proc. Amer. Math.
Soc. 87 (1983), 117-120.

4. BROWN, J. E., Some sharp neighborhoods of univalent functions, Trans. Amer. Math.
Soc. 287 (1985), 475-482.

5. BROWN, J. E., Quasiconfomal extensions for some geometric subclasses of univalent
functions, International Journal of Math. and Math. Sciences (1984), 187-195.

6. DUREN, P. L., Univalent functions, Springer-Verlag, New York, 1983.

7. HALLENBECK, D. J. and MacGREGOR, T. H., Linear problems and convexity techniques
in geometric function theory, Pitman Publishing Limited, 1984.


