A NOTE ON NEIGHBORHOODS OF ANALYTIC FUNCTIONS HAVING POSITIVE REAL PART

JANICE B. WALKER

Department of Mathematics Xavier University Cincinnati, Ohio 45207

(Received July 7, 1989 and in revised form October 18, 1989)

ABSTRACT. Let P denote the set of all functions analytic in the unit disk $D = \{z \mid |z| < 1\} \text{ having the form } p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k \text{ with } \text{Re}\{p(z)\} > 0. \text{ For } \delta \ge 0, \text{ let } \sum_{k=1}^{\infty} p_k z^k \text{ analytic in D with } \sum_{k=1}^{\infty} |p_k - q_k| \le \delta. \text{ We } k=1 \quad \sum_{k=1}^{\infty} p_k z^k \text{ analytic in D having the form } p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k \text{ with } \text{Re}\{[zp(z)]^{+}\} > 0. \text{ We show that } P^+ \text{ is a subclass of } P \text{ and determine } \delta \text{ so that } N_{\delta}(p) \subset P \text{ for } p \in P^+.$

KEY WORDS AND PHRASES. Functions having positive real part (Carathéodory class), subordinate function, δ -neighborhood, and convolution (Hadamard product). 1980 AMS SUBJECT CLASSIFICATION CODES. 30C60, 30C99.

1. INTRODUCTION

Let *H* denote the class of functions f analytic in the unit disk $D = \{z \mid |z| < 1\}$ with f(0) = 0 and f'(0) = 1. For $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ in *H* and $\delta \ge 0$, let the δ -neighborhood of f be given by $N_{\delta}(f) = \{g(z) = z + \sum_{k=2}^{\infty} b_k z^k \mid \sum_{k=2}^{\infty} k \mid a_k - b_k \mid \le \delta\}$. For h(z) = z, Goodman [1] has shown that $N_1(h) \subset S^*$ where S^* denotes the class of univalent functions in *H* which are starlike with respect to the origin. St. Ruscheweyh [2] proved that if $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$ lies in C, where C denotes the class of convex univalent functions in *H*, then $N_{\delta}(f) \subset S^*$ for $\delta_n = 2^{-2/n}$. Fournier [3] found that if C were replaced by

$$\widetilde{T} = \{g \in C \mid |\frac{zg''(z)}{g'(z)}| < 1, z \in D\}$$

and S* by

T = { g
$$\varepsilon$$
 S* $\left| \left| \frac{zg'(z)}{g(z)} - 1 \right| < 1, z \varepsilon$ D}

then $N_{\delta_n}(f) \subset T$ for $\delta_n = e^{-1/n}$. Brown [4] extended the results of St. Ruscheweyh and Fournier and provided simpler proofs. We shall focus on a class of functions directly related to S* and to other classes of univalent functions. Let *P* denote the class of

functions analytic in |z| < 1 having the form $p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$ with $\text{Re}\{p(z)\} > 0$ for |z| < 1. This family is usually called the <u>Carathéodory class</u>. For f in *H*, recall that $f \in S^*$ if and only if p(z) = zf'(z)/f(z) lies in *P*.

Let P' denote the class of functions analytic in |z| < 1 having the form $p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$ with $\text{Re}\{[zp(z)]'\} > 0$ for |z| < 1. In this paper we shall define a neighborhood of $p \in P'$ and determine $\delta > 0$ so that $N_{\delta}(p) \subset P$. 2. PRELIMINARY RESULTS.

We begin by defining P and P' in terms of subordination. Recall that g is <u>subordinate</u> to h, written $g \prec h$, if g(z) = h(w(z)) where w is analytic in |z| < 1, w(0) = 0 and |w(z)| < 1 for |z| < 1. Since $\frac{1+z}{1-z}$ has positive real part in |z| < 1, is univalent, and is 1 when z = 0, it is not difficult to show that

$$p \in P$$
 if and only if $p(z) \prec \frac{1+z}{1-z}$ (2.1)

and that

$$p \in P'$$
 if and only if $[zp(z)]' \prec \frac{1+z}{1-z}$. (2.2)

One can also show that $P' \subset P$. For according to (2.2), if $p \in P'$ then

$$[zp(z)]' \prec \frac{1+z}{1-z}$$

and thus we have

$$\frac{[zp(z)]'}{[z]'} \prec \frac{1+z}{1-z} .$$

Since $\frac{1+z}{1-z}$ is convex and univalent, we can apply a lemma (see Brown [5], p. 192) to obtain

$$\frac{zp(z)}{z} \prec \frac{1+z}{1-z}$$
,

from which it follows that

$$p(z) \prec \frac{1+z}{1-z}$$
.

Hence, by (2.1) $p \in P$ and $P' \subset P$.

Now let us establish a criterion for a given function to belong to *P*. By (2.1) $q \in P$ if and only if $q(z) \prec \frac{1+z}{1-z}$. Since $\frac{1+z}{1-z}$ is univalent, then $q \in P$ if and only if $q(z) \neq \frac{1+e^{i\theta}}{1-e^{i\theta}}$, for $0 < \theta < 2\pi$ and |z| < 1. That is,

$$q \in P$$
 if and only if $(1 - e^{1\Theta})q(z) - (1 + e^{1\Theta}) \neq 0$, (2.3)

for $0 < \theta < 2\pi$, |z| < 1.

We can express (2.3) in terms of convolutions. Let f and g be analytic in the unit disk D. Recall that if $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$, then the <u>convolution</u> (or <u>Hadamard product</u>) of f and g, denoted by f*g, is

$$f \star g = \sum_{k=0}^{\infty} a_k b_k z^k.$$

Thus, $(1 - e^{i\theta})q(z) - (1 + e^{i\theta})$ can be written as $(1 - e^{i\theta}) \left[\frac{1}{1-z} * q(z) \right] - (1 + e^{i\theta}) * q(z)$

$$= \left(\frac{1-e^{i\theta}}{1-z} - (1+e^{i\theta})\right) * q(z).$$

Let $h_{o}(z)$ be defined by

$$h_{\theta}(z) = -\frac{1}{2e^{i\theta}} \left[\frac{1 - e^{i\theta}}{1 - z} - (1 + e^{i\theta}) \right]$$

Then it follows that $h_{\theta}(0) = 1$ and for $0 < \theta < 2\pi$, |z| < 1, $q \in P$ if and only if $h_{0}(z) + q(z) \neq 0.$ (2.4)

3. THE MAIN RESULT.

We define a δ -neighborhood of p for p ϵP .

DEFINITION. For any $p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$ in P and $\delta \ge 0$, the <u> δ -neighborhood of p</u>, denoted by $N_{\chi}(p)$, is

$$N_{\delta}(p) = \left\{ q(z) = 1 + \sum_{k=1}^{\infty} q_{k} z^{k} \middle| \begin{array}{c} \sum_{k=1}^{\infty} |p_{k} - q_{k}| \leq \delta \right\}$$

Our main result is the following theorem.

THEOREM. If $p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$ belongs to P', then $N_{\delta}(p) \subset P$, where $\delta = 2 \ln 2 - 1$ \simeq .3862944. This result is sharp.

We need several lemmas.

LEMMA 1. If $p \in P'$, then $z(p*h_{\alpha})$ is univalent for each $0 < \theta < 2\pi$. PROOF. Fix $0 < \theta < 2\pi$. Then

$$\begin{bmatrix} z(p \star h_{\theta}) \end{bmatrix}' = \begin{bmatrix} \frac{-z}{2e^{i\theta}} \left((1 - e^{i\theta})p(z) - (1 + e^{i\theta}) \right) \end{bmatrix}'$$
$$= -\frac{1}{2} \begin{bmatrix} zp(z) - \frac{1 + e^{i\theta}}{1 - e^{i\theta}} \end{bmatrix}' \frac{1 - e^{i\theta}}{e^{i\theta}}$$
$$= -\frac{1}{2} \begin{bmatrix} (zp(z))' - \frac{1 + e^{i\theta}}{1 - e^{i\theta}} \end{bmatrix} (1 - e^{i\theta}) e^{-i\theta}. \tag{3.1}$$

By definition of P', the range of (zp(z))' for |z| < 1 lies in Re(z) > 0 and that of $\frac{1+e^{i\theta}}{1-e^{i\theta}}$ lies on the imaginary axis. Thus, we can choose α so that

$$\operatorname{ke}\left\{e^{1\alpha}\left[z(p*h_{\theta})(z)\right]'\right\} > 0$$

for |z| < 1, namely $\alpha = \arg\{-(1 - e^{i\theta})^{-1}e^{i\theta}\}$. By the Noshiro-Warschawski Theorem

 $\begin{array}{l} (\text{Duren [6], p. 47), z(p*h_{\theta}) \text{ is univalent for each } \theta, \ 0 < \ \theta < \ 2\pi. \\ \text{LEMMA 2. If } p \in \mathcal{P}', \ \text{then} \left| [z(p*h_{\theta})]' \right| > \frac{1-r}{1+r} \ \text{for } |z| = r < 1, \ 0 < \ \theta < \ 2\pi. \\ \text{PROOF. Using expression (3.1) for } |z(p*h_{\theta})|', \ \text{we define } F(w) = e^{-i\theta}(1 - e^{i\theta}) \\ \left(\frac{1+e^{i\theta}}{1-e^{i\theta}} - w\right), \ \text{where } w = \frac{1+re^{it}}{1-re^{it}}, \ 0 < t < \ 2\pi. \\ \text{Now } F(w) \ \text{may be rewritten as} \end{array}$ $F(w) = e^{-i\theta} \{ (1 + e^{i\theta}) - (1 - e^{i\theta})w \}, 0 < \theta < 2\pi.$

Thus,

$$\left| F(w) \right| = \left| 1 + w \right| \left| \frac{1 - w}{1 + w} + e^{i\theta} \right|$$

J. B. WALKER

$$\begin{aligned} &= |1 + w| |e^{i\theta} - re^{it}| \\ &= |1 + w| |1 - re^{i(t-\theta)}| \\ &\geqslant (1 - r) |1 + w|. \end{aligned}$$

Since $|1 + w| = \left|1 + \frac{1 + re^{it}}{1 - re^{it}}\right| = \left|\frac{2}{1 - re^{it}}\right| \ge \frac{2}{1 + r}$, it is clear that $|F(w)| \ge 2 \frac{1 - r}{1 + r}. \end{aligned}$

Since $p \in P'$ and (3.1) holds, by letting w = [zp(z)]' we get the desired inequality. That is

$$\left| \left[z(p \star h_{\theta}) \right]' \right| \geq \frac{1 - r}{1 + r}$$

The lemma is proved.

emma is proved. LEMMA 3. If $p \in P'$, then $|p*h_{\theta}| \ge \delta$, where $\delta = \int_{0}^{1} \frac{1-t}{1+t} dt = 2 \ln 2 - 1$.

PROOF. Let $p \in P'$. Then by Lemma 1, $z(p*h_A)$ is univalent. For fixed 0 < r < 1, choose z_0 with $|z_0| = r$ such that

$$\begin{array}{l} \min |z(p \star h_{\theta})| = |z_{0}(p \star h_{\theta})(z_{0})| \\ |z| = r \end{array}$$

Since $z(p \star h_{\theta})$ is univalent, the preimage L of the line segment from 0 to $z_0 | (p \star h_{\theta})(z_0) |$ is an arc inside $|z| \leq r$. Hence, for $|z| \leq r$ we have

$$|z(p*h_{\theta})| \ge |z_{0}(p*h_{\theta})|$$

=
$$\int_{L} |[z(p*h_{\theta})]'||dz|$$

$$\ge \int_{0}^{r} |[z(p*h_{\theta})]'||dz|.$$

Accordingly, we apply Lemma 2 to get

$$\begin{split} |\left[p\star h_{\theta}\right](z)| &\geq \frac{1}{r} \int_{0}^{r} |\left[z(p\star h_{\theta})\right]'| |dz| \\ &\geq \frac{1}{r} \int_{0}^{r} \frac{1-t}{1+t} dt \\ &= \frac{2}{r} \ln (1+r) - 1. \end{split}$$

The function $g(r) = \frac{2}{r} \ln (1 + r) - 1$ is decreasing for r > 0 if g'(r) = $\frac{-2}{r^2} \ln (1 + r) + \frac{2}{r(1 + r)} < 0$. It is not difficult to show that $r - (1 + r) \ln (1 + r)$ \leq 0 for r \geq 0, from which it follows that g'(r) < 0 for r > 0. Hence

This completes the proof of Lemma 3. Now we may prove the theorem. PROOF (OF THEOREM). Let $p(z) = 1 + \tilde{\Sigma} p_k z^k \in P'$ and let δ be as in Lemma 3. We want to show that every $q \in N_{\delta}(p)$ belongs to P, where $q(z) = 1 + \tilde{\Sigma} q_k z^k$ is an arbitrary but fixed function in $N_{\delta}(p)$. Hence, $\tilde{\Sigma} |p_k - q_k| \leq \delta$. Observe that

428

$$\geq |h_{\theta} \star p| - |h_{\theta} \star (q - p)|$$

$$\geq \delta - \left| \sum_{k=1}^{\infty} \frac{1 - e^{i\theta}}{2} (q_{k} - p_{k}) z^{k} \right|$$

$$> \delta - \sum_{k=1}^{\infty} |q_{k} - p_{k}| \geq \delta - \delta = 0$$

Therefore, $h_{\theta} \neq q \neq 0$ for |z| < 1. By (2.4), it follows that $q \in P$. Consequently, $N_{s}(p) \subseteq P$.

Now we prove that the result is sharp. Let p(z) be defined by $(zp(z))' = \frac{1+z}{1-z}$. Then $p(z) = -1 - \frac{2}{z} \ln (1-z)$. Now let $q(z) = p(z) + \delta z = -1 - \frac{2}{z} \ln (1-z) + \delta z$. Clearly, $q \in N_{\delta}(p)$. However, as $z \neq -1$, then $q(z) \neq -1 + 2 \ln 2 - \delta = q(-1)$. Therefore, if $\delta > 2 \ln 2 - 1$, then q(-1) < 0 and consequently Re q(z) < 0 for z near -1. This contradicts Re q(z) > 0 for |z| < 1. This completes the proof of the theorem.

REFERENCES

- GOODMAN, A. W., Univalent functions and nonanalytic curves, <u>Proc. Amer. Math. Soc</u>. <u>8</u> (1957), 598-601.
- ST. RUSCHEWEYH, Neighborhoods of univalent functions, <u>Proc. Amer. Math. Soc.</u> <u>81</u> (1981), 521-527.
- FOURNIER, R., A note on neighborhoods of univalent functions, <u>Proc. Amer. Math.</u> <u>Soc. 87</u> (1983), 117-120.
- BROWN, J. E., Some sharp neighborhoods of univalent functions, <u>Trans. Amer. Math.</u> <u>Soc.</u> <u>287</u> (1985), 475-482.
- BROWN, J. E., Quasiconformal extensions for some geometric subclasses of univalent functions, <u>International Journal of Math. and Math. Sciences</u> (1984), 187-195.
- 6. DUREN, P. L., Univalent functions, Springer-Verlag, New York, 1983.
- HALLENBECK, D. J. and MacGREGOR, T. H., Linear problems and convexity techniques in geometric function theory, Pitman Publishing Limited, 1984.