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ABSTRACT. Explicit traveling wave solutions of Fisher’s equation with three simple

zeros u u + u(l-u)(u-a), a E (0, I), are obtained for the wave speeds
t xx

C +#2 (I/2-a)suggested by pure analytic considerations. Two types of solutions

are obtained: one type is of a permanent wave form whereas the other Is not.
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I. INTRODUCTION.

The scalar non-linear differential equation of reaction and diffusion

u u + f(u) (1.1)
t xx

arises in many applications. The particular case f(u) u(1-u) was introduced by

Fisher [I] in connection with "genetic waves" which are simply wave front solutions.

Since fronts generally exist when f has many zeros, equation (I.I) with this property

is sometimes referred to as "Fisher’s non-llnear diffusion equation" (Fife [2]).

The case when f has exactly one zero is trivial whereas the case of two simple

zeros was originally proposed by Fisher [I] as a model for the propagation of a mutant

gene with an advantageous selection intensity. Fisher’s equation with f(u) u(l-u)

occurs also in flame propagation, In the branching Brownian motion, and in nuclear

reactor theory (Canosa [3]). The first known explicit traveling wave solution of the

Fisher equation with two simple zeros was obtained by Ablowltz and Zeppetella [4] for

the special wave speeds C +/- 5/.
In this paper we consider the interesting case when f has exactly three zeros,

the two outer ones stable, the inner one unstable, and all three simple. This occurs

as a population genetic model, as well as in the study of transmission lines,

combustion theory, and some degenerate cases of nerve signal propagation. Assume the
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two stable zeros are at u 0 and u I, and the unstable one lles in between. A

function f(u) that fits this model would be

2 3
f(u) u(l-u)(u-a) au + (1+a)u u (1.2)

where a e (0,I). On substltutlng u(x,t) U(z) U(x-Ct) in (I.I) and (1.2), we

obtain the traveling wave equation

U" + CU’ aU + (l+a)U
2

U
3

0 (1.3)

where primes denote differentiation with respect to z.

2. MAIN RESULTS.

Our objective is to explore the possibility of explicit solutions for equation

(1.3). In fact we discover by pure analytic considerations that equation (1.3) can

have explicit solutions when the functional dependence of C on a is of the

form C /2( 1/2- a).

By assumption u 0 and u are both stable rest points for the kinetic

equatton u
t

f(u) so we are in the bistable case. Hence there is a unique solutton

U((z),C) depending on a, of course. Let g denote the functional dependence of C on a,

C g(a). To find this functional relationship we begin by determining what kind of

)-rpole a complex solution of (1 3) can have. If U(z) K(z-z then the U"
o

and U3 terms must balance. Hence

U" K(-r) (-r-l) (z-z)-r-2 K3(z_z )-3r U 3.
o o

This gives r and K2 2 for a non-trlvlal solution. If the solutions are of the

Palnlev type, then it is necessary that any Laurent series representation have

coefffclents well-deflned by the differential equation (A review of Palnleve’s work

appears in Ince, [5]). Thus we look for a solution of the form

U(z) K/z + a + a z + a2z +.. (2.1)
o

where K2 2 and use of the translational invarlance of (I3) is made to drop the
-2 -1 0

parameter z When (2.1) is substituted in (1.3) and coefficients of z z z
o

..are successively equated to zero to get expressions for a al, a2 as functions of
o

C and a. A problem arises when attempting to find a3 Upon equating the coefficient

of z to zero we get, after somewhat tedious algebra, the equation

(O).a
3

+ C2[(1-2a) 2 2C2] 0 (2.2)
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For the Laurent series representation to be valid, C must satisfy equation (2.2) which

gives C 0, gl(a), g2(a) where gl -g2 2 (I/2-a) For C O, explicit solutions

are not feasible unless a I/2 Solutions with C g2(a) are treated by changing x

into -x. Thus, we consider only the case

(a) ,/2 (I/2-a). (2.3)C

On substituting (2.3) in (1.3), the latter equation becomes

or

U" +,/ (I/2-a)U’ -aU +(l+a)U2 U
3

0

U" +-J--I U’ + U
2

U3-- a( ,2--U’ + U U2).
,/2

(2.4)

To solve equation (2.4) we assert that every solution U(z) of (2.4), if it

exists, must be valid for all a. Our assertion is true only if U(z) satisfies the

following equations:

,/2U’ + U U
2 O, (2.5)

U
2 U

3U" + 7 U’ + O. (2.6)

Clearly (2.5) can be solved directly leadlng to that solution of (2.6) satisfying the

conditions of biological interest

U(-=) I, U((R)) O. (2.7)

In fact, equation (2.5) is a Bernoulli equation whose solution satisfying (2.7) is

Ul(X,t) U(x-Ct) U(z) I/(l+beZ/#2), (2.8)

where b is an arbitrary constant that ought to be positive; otherwise, solutions with

negative b blow up for finite real z. That the solution (2.8) of (2.5) also satifies

(2.6) can be demonstrated by a direct, straigtforward calculation.

Our solution (2.8) represents a traveling wave which can be thought of as

connecting the two trivial solutions u 0 and u I. It has a unique velocity C and,

except for translation, a permanent wave form as well.

Reflection in.x yields a wave traveling in the opposite direction

u](-x,t) U(-x-Ct) u(-=)= o, u(=)=].,
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If C O, a combination of u and its reflection, yield a second solution in the

form of a diverging structure. This solution, which is not of permanent form, may be

represented by the function

u l(x,t), Cx O,

u2(x, t) =j
(-x t) Cx O,LUl
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