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ABSTRACT. A study is made of an unsteady flow of an incompressible viscous fluid with

embedded small inert spherical particles contained in a tube of ellptlc cross-sectlon

due to a periodic pressure gradient acting along the length of the tube. The

solutions for the fluid velocity and the particle velocity are obtained for large and

small times. It is shown that the effect of particles on the flow is significant in

the small-time solution while the large-tlme solution shows no effect of the particles

on the flow.

INTRODUCTION.

Considerable attention has been given to pulsatile flows of fluids in a tube of

various cross-sectlon due to its increasing importance in the study of blood flow in

arteries. Womersley (1955) has studied the pulsatle flow of a viscous fluid in a

tube of circular cross-sectlon due to a given pressure gradient. Similar problems

have been investigated for the unsteady flow of a viscoelastic liquid by Waiters and

King (1970 1971). Khamrui (1955) has obtained solutions for a periodic flow of a

viscous liquid in a tube of elliptic section under the influence of a periodic

pressure gradient. Later on, Ghosh and Khamrui (1978) have investigated the pulsatile

flow model of a viscoelastic fluid in a channel of elliptic cross-sectlon. In spite

of these works, there seems to be no study of pulsatile flow of a two-phase viscous

liquid in a tube of elliptic section due to a periodic pressure gradient. The main

objective of this paper is to investigate such problem in order to determine the fluid

velocity as well as the particle velocity, and to examine the effects of particles on
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the flow. It [s shown that. the effect of particles on the flow i significant in the

small-time solution while the large-tlme solution contains no effect of particles on

tlle flow.

2. MATHEMATICAL FORUMULATION.

Based upon the Saffman (1962) two-phase ftuid model, the equations of unsteady

motion of an incompressible viscous fluid with embedded ident[cal small inert

spherical particles are

+ v(2ux2 + --) + (v-u)
u
t z y2

(2.1)

8__v. ]_ (u v) (2.2)
8t x

where u,v are the components of the fluid and the particle velocity in the direction

of z-axis which is taken along the length of the tube. The last term on the right

hand side of equation (2.1) represents the force exerted by tile particles on the flow

whle the term on the right hand side of equation (2.2) is a slm[lar force-term
mN

o
exerted by the fluid on the particles, k ----is the ratio of the mass density of

the particles and the fluid, commonly known as mass concentratlon of the dust

particles. is the relaxation time of the part[cles, m, N, k, @ and are

respectively the mass of a particle, the number density of particles, the Stokes

resistance coefficient, the density and the kinematic viscosity of the fluid.

The flow is generated from rest due to the periodic pressure gradient acting

along the length of the tube as

3p imt
3z

P e (2.3)

where P is a constant and is the frequency.

The initial conditions are u(x,y,O) 0 and v(x,y, O) 0 (2.4ab)

3. THE LAPLACE TRANSFORMED SOLUTION.

We apply the Laplace transform of u(x,y,t) and v(x,y,t) wth respect to t defined

by (Mylnt-U and Debnath 1987])

f, e-Stu(x,y,s)
0 u(x,y,t)dt (3.1)

to solve the differential system (2.1) (2.3). The transformed equation for

u(x,y,s) is given by

2u +
)2 S (i+_k+s)- P

x2 y2 l+s
u

pv (s-i c) (3.2)
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P( +
Substituting u U

p s(s-i)(l+k+s)

2 + 2 2F 0q
}x

2
3y

2

where

into (3.2), we obtain

(3.3)

2 s(l+k+sz)
q v(l+sT) (3.4)

We next introduce the elliptic coordinate (K,n)defined by x+iy c cosh(+i)
2

b
2 I/2where c (a in (3.3) to transform equation (3.3) in the form

2- 2 2
3

2
+ -3q2 2 (cosh 2 cos 2) U 0 (3.5)

where 442 2 2
--q c

Separating the variables by using U () (), we find a modfled Mathleu

equation for (), and a Mathleu equation for () as.- (a 22cosh 2) 0
82

+ (a + 22cos 2n) - 0
}n

2

(3,6)

(3.7)

where a is a constant.

Since U is symmetrical with respect to the axis of the ellipse and is periodic

42)with period 7, is a periodic function Ce2n( of order 2n (see Mclachlan

modified Mathieu function Ce2n(,-2). these are(1947)). is then the

represented by expansions

_2 )n )r .(2n)Ce2n(r, (-1 (-1 a2r cos 2rr,
ro

Ce2n(-4
2 (-1)n . (-1)r 2n)cosh

A(2n)where
2r

are functons of 4
2

The appropriate general solution for u then becomes

(3,7)

(3.8)

_P 1+sz
p s(s--i)(l+k+s) + " C2n Ce

r-o
2n(,-2) Ce2n(r,-2).

If o designates the boundary of the ellipse, the boundary condition reads

(3.9)

u 0 when 0 (3.10)

That is,
P (l+sz)
O s(s-i)(l+k+sz) 4

2
C2nCe2n(0 42 Cn (n ).

ro
(3.11)
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,-62Multiplying (3.11) by Ce2n(n and integrating from 0 to 2 with respect to n and

then using orthogonal relations, we obtain

2(-l)nA(2n) P(l+s)
C o (3.12)

622n
Ce2n(o,- I2n ps(s-i0)(l+k+s)

where
2w

12n f Ce2n(B, -62 d.
o

(3.13)

Hence

--u P I+sT 62
0 s(s-tto)(l+k+sT)

+ C2nCe2n( 62) Ce2n(rt
rffio

(3.14)

with
2 2

8ffi 2=q c
4

4. SOLUTIONS FOR SMALL AND LARGE TIMES.

The form of q, that is, clearly suggests that the Laplace inversion of (3.14)

is almost a formidable task. So in order to give a fairly good description of the

flow, the inversion will be considered in two limiting cases of small and large values

of 8 (- 62).

Case I: For small values of 8, we have

ce (n,-8) (1 + 8 cos 2n) (4.1)
o

-2ce2(n,-8) cos 2n + 8( cos 4n -)

and similar asymptotic expansions for the modified Mathleu functions.

Also from Mclachalan (1947), we get

A(0) A(2) 83 A(2n) 0(Sn)
o o -8+0( o

so that

(4.2)

C P (I + sT) (I 8 cosh 2o) (4.3)
o P s(s-l) (l+k+sT)

P(I + sT) 8
C2 -- p s(s-lm)(l+k+sT) cosh 2 o

Substituting these is (3.14), we obtain

(4.4)

where n is the viscosity of the fluid.
o

2
P c’ [cosh 2o- cosh 2 cos2n + cosh 2 cos 2n] (4.5)

8n (s-i) cosh 2o
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The inversion of (4.5) gives

P c
2

it
e [cosh 2 -cosh 2- cos 20 + cosh 2 cos 20] (4.6)u

8 n cosh 2

Consequent ly

2
[cosh 2 cosh 2 cos 2n + cOShcosh2cos 20]cRe{u}

8 n 2-
0

cos t (4.7)

This result describes the fluid velocity for small B (or small s), that is for

large time t. Thus the large time solution does not show any effect of the particles

on the fluid flow.

The particle velocity in this case can be obtained by integrating (2.2) and has

the form

2 it -t/P c e -e [cosh 2=o- cosh 2 cos 2n + cosh 2 cos 20j (4.8)v
8 0 + l0z cosh 2

and its real part is

Re {v P c
2

(cost+z22 slnt-t/Z)[csh 2o-Csh 2-cos20 +
800

cosh2 cos2n] (4.9)
cosh 2

Expressing in Cartesian form of (4.7) and (4.9), we obtain

a2b2 2 2
Re{u} P---- cost (I x__

2-b2 2
b
z200 a

Re(v) P __a2__2 cosmt+mz sint -e
-t/z

2qo (a2+b2) + m2z2
2 2

(1 x bZ2

(4.10)

(4.11)

These results indicate that in the limit t =, the fluid moves faster than the
-I

particles with a phase lead tan mz if m 0, and for m 0, the fluid and the

particle move in unision in the ultimate steady state condition.

Case II: When B is large (or t is small), it follows from Mclachlan (1947) that

A0]=o" and for n I, IAo(2n)l is very small. Consequently, the asymptotic formula

gives
2

Ceo(’-B) (’Isinh-------- KoCSh[2 cosh tanh ltan(/4 i/2)] (4.12)

Ceo(0) Ceo(12)
where K (4.13)o x(0) (2)z/2-

o

Since 2 qc, we get

cosh[2 cosh tanh-l{tan( i-))]

1
tan( --) (tanh ) 2exp{qc cosh}.2 exp{qc cosh tanh

-I - It I/
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Hence for large values of 6 i.e. for large

P (1+sT) P l+sT
p s(s-lm)(l+k+sz) p s(s-i)(l+k+s)

cosh C

cosh
exp {-qc(cosh o-cosh )}.

(4.14)

The inversion of (4.14) yields

PRe{u} 2 z2p[(1+k) +m2

l+k

{mzk cost + (l+k+B2T2)slnt mke
t

+ P {e -r [mzk cos(t-)+(l+k+2z2)sln(t-6)
p[ l+k

2+2 z2
l+k,

’- Tkp- (l+k+2z2) (z___
P ----) I/2

2+o2
e-tsln [: I/-: )d

l+k I /v
,O

l+k, 0

where

e
-pt

(z_
(- I/2 cosh C

l+k sin [--I )d}

r za I/2 6 z a
22v( +m22)

(4.15)

a ) 1/2, z c(cosh /o cosh ),
2v( l+2z2)

,f d f

In the case of fluid flow without particles (k=0), the velocity field (4.15) assumes

the form

Re{u}
P slnt + __P {sln[t- / c(cosh o- cosh )] x
p o po 2v

cosh 1/2 o
x exp [-/--’v c(cosh o- cosh )]} +

cosh -p cosh o e-t+ o 2+m2
sin [c(cosh o-COSh ) ]dp (4.16)

P cosh

This is identlcal with Khamrui’s result (1955), when P is replaced by -P and t .
We further note that the result (4.15) represents the small-time solution for the two-

phase fluid velocity. Moreover, the presence of the parameter k and T in (4.15)

indicates that the fluid velocity is significantly affected by the particles when t is

very small. This small-tlme solution also exhibits the boundary layer character of

the flow similar to that of the fluid motion without particles. The thickness of the

boundary layer decreases with increasing values of the particle concentration.
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The particle velocity, when B is large, is given by

Re{v} P {(ak [(a sln(at + cos(at-e
-t/

p(a[ +k) 2+m22 + 2 (a2
+

+ (l+k+(a2z2)[(a e
l+k

-t/sin (at (acos(at -t/
2 2

(e -e )}
+

p cosh o [e-r{(ak[(a stn((at-)+cs((at-6)+e-t/((astn-cs6)]22
+ +

+ (1+k+(a2z2) [,sin((at-)-(azcos((at-8)+e-t/z((azcos+sin 5)]
2 2

! f’ z (azkp- m(l+k+(a2z2) ,(e-t/Z_e-Pt) sin {__z_
l+k z(V- l/z) (l2+(a2) ,/v
,0

l+k.

}dl

+(ak_ f - e
-t/T

e-t

l+k (v- 1/)(u
,0

l+k)

l+k.

{z I(V-----’) 1/2sin [%. ’ (4.17)

Finally, the results corresponding to the circular cylinder are obtained by

replacing c(cosh t cosh ) by (a r) and
cosh o

by
a

in (4.15) and (4.17)
r

where a is the radius of the cylinder. In particular, when k 0, we find from (4.16)

that

Re{u)
P sin (at

/
P () 1/2

P (a [- sin {(at (a r)

sin {(a r) d].

2 2+ y2.where r x This is a well-known result for large (a and t .
(4.18)
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