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ABSTRACT. lne model for resistive chffusion of a force-free magnetic field in a compresmbie plasma is

analysed. Such a model hs been suggested for describing the behavior of the solar outer atmosphere and

that of solar flares. Previous analysis of the model involved assumptions of linear plasma velocity and

constant magnetic energy. This paper deals with nonconstant magnetic energy in the cases of linear plasma

velocity and planar plasma velocity. Some necessary conditions on the plasma direction vectors are derived.

Finally, some aspects of the model assumptions are discussed, including nonnormality of initial data vectors

to initial surfaces.
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1. INTRODUCTION

In this paper we consider the model for resistive diffusion of a force-free magnetic field in a compressible

plasma which moves to compensate for changes in the magnetic configuration. Such a model has been

suggested by Low [1] for describing the behavior of the solar outer atmosphere and of solar flares.

Let /(t, be the magnetic induction with domain [0, T] 8 C_ ]1t ]R where S is an unbounded

region. Let " (t, ) be the velocity of the plasma. The model for resistive diffusion is given by

/, ’ X {’ X/) +’/ (1.1)

# x / c/ (1.2)

#/ 0 (1.3)

{# x l’ )/ O (1.4)

where c{t, :F) 0 is a scalar function and where /> 0 is the constant resistivity of the plasma. In addition,

taking the divergence of equation {1.2) and using equation {1.3) yields the relationship

/ @c 0. (1.5)
For a static plasma ([" 0 and an initial force-free magnetic induction/0{) =/{0, ), Chandrasekhar-

Kendall [2] showed that/(t,) remains force-free for all time if is constant. Conversely, :lette [3] showed
that B remains" force-free for all time only if is a constant.

We assume in our development that < is not constant. Consequently, the direction of the magnetic field

lines may vary with time at each E . In order that the magnetic field remains force-free, it is necessary

that the plasma velocity vary, say (t, ). Equations {1.1) and (1.4) indicate the relationships between

B and W for such a setting.

Low [1] considered equations (1.1)-(1.5) for a special case/ 0, l cvc, and @c zc. He also

assumed that the magnetic energy IlJll is constant. We consider a more general setting in this paper.

2. DERIVATION OF THE MODEL

We briefly review the derivation of the model from Maxwell’s equations. A more thorough development

can be found in Priest [4]. A continuous single-fluid plasma which is in thermodynamic equilibrium with

distribution functions can be modeled by Maxwell’s equations:
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1

-/=0 (2.2)

’/ o/e (2.4)

where is the electric field, f is current density, is magnetic permeability, is permittivity, and is the

charge density.

Define Eo I/1, Bo I/I, and Wo I1. Two basic assumptions are usually made in magnetohydro-

dynaanics:

Wo . and Eo WoBo,

so that for typical length o and typical time to,

Eo WoBo Wo’Bo Wo So
Cto c2to lo to

Comparing the magnitudes of terms in equation {2.1) and using the above approximation, the displacement

current term is negligible: [c-/[ ,: I. As a mathematical approximation, assume that J .
Alo, & solar plasma is essentially electrically neutral; that is, if the number density of positive ions is

n+ and the number density of negative ions is n_, then the charge density is small: g (n+ _)e ,: 1.

With these aumptions, equations (2.1) and (2.4) become # --/f and */ 0.

Since the plasma is moving with non-relativistic speed, it is subject to an electric field / in

aidition to the electric field . In the frame of reference moving with the plasma, Ohm’s law is given by

f (/ + x/) where <r is electric conductivity.

In active regions, if the magnetic field is sma then the Lorents force is negligible and the magnetic

field is approximately force-free. As a mathematical approximation: ,/ 0 or/f c for some scalar

function <(t, ).
Ohm’s law and the force-free assumption imply/ r/J- P J where r/= (<r/) -x > 0. Combining

the above derivations with (2.1)-(2.4) and using (xJ) -J yield the model of resistive diffusion

(1.1)- (1.4).
3. THE MODEL FOR AN IRROTATIONAL PLASMA

In this section we consider an irrotational plasma, so the velocity satisfies the condition

Consequently, equation {1.4) implies/ 0. It can be shown that

( ) (.#) (# )-(

and

( P) = #+ (.)v +( )#.
Solvg for { ), substitutg m equation {1.1) for , d oupmg terns yields

+ 2( )+ (.=’ + )#+ (.% +) x .
Dee the magnetic en to ; then dottg the ave equation with yiel

, + (# ) +(=’ + )e o.

Me the chge of dependent vsble: ; then d

.%=o, C.=o.

(3.2)

(3.3)

(3.,)
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Solutions to {3.1)-{3.4) will be constructed using the fight-handed orthonormal system of differentiable

vectors (t,, ,7(L, and, x 6. For notation purposes, the dectional derivative * of a

scal function will be denoted by {where the vector cap on g h omitted). Similly, the dection

derivative (- )fof a vector hnction fw be denoted .
Chse plums velity wfwhere [w[ 0 h the speed of the plums. Let (cos )f+ (sin

where (,. Clely h a unit vtor d the orthogonslity conditions h (3.4) e sathfied.

Substitute h (3.2) and dot with if, and g respectively, to obtn

-(,=) (=o, )(. - )+ (,= )(. -=),
(=o,) -(=o, )(. F- =) (i= )( + ).

Substitut, (3.3) to obtain

-(,)+ (o,). -(o, )(.+) (,, )(O. + ).
In solving the ave equations, define [c s]r d

M
-#.xg -#.x -g - 0

the= th so=tions , ,, and , =, gi,= b Ca =-:M, , -:RN+, ,=d, rN-
with a comparably condition :ME. Substitute hto {3.I} d dot with to obtain

Dotting with or #produces , +a F" { + Za} + aa + =. Substituting fin x

=d dotting with #, =a idd, f- x f= O, . -(. x , . (- x d],

Define the matrix

One can solve equations (3.5) and (3.6) for =p and c, in terms of 8. The general model for an irrotational

plasma can be written as

" (3.7), + 2d f- ( + 2d) +d +,
e rM, +2e + Z(n + f+ d)e 0, (.S)

p

f.f=0, =-.d ,=.x (.0)

Solutio to th equatio provide the plma velity w the sc functions a, d the

magnetic reduction [(c, )F+ (am).
4. LINEAR PLASMA MOTION

Supse that the vecto if, and fe co,rants. Let d * , v * , and p f* . The model

for otation plma (3.7)- (3.10) reduces to

=, .=, =-, ,=d--

+ 2(a + Wd) 0 (4.2)
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where a a(d, t), w w(d, t), (d, v, p, t), and (v, p, t). Consequently, (r/, + we), (r/c, +
w)p 0. Differentiate (4.2b) with respect to d to obtain (/a +w) 0. Thus, a + t0 is a function of

only. Moreover, one can solve for the energy function:

(-2 f0t +am{,, d) + IIo(II2,

where/o( --/(0, ). The condition ’a 0 forces the initial data to satisfy (- )(ll/ollm) 0.

From the equations (4.1b,c), compute ,p in two ways and equate to obtain (log e), 0. This forces

,/ f(v) and / g(p) for some functions f and g. In addition, this implies [I/0112 F(v)G(p) for

some functions F and G. The gradient equation for b may be written as

=+/()- ().

Take the t-derivative of this equation to obtain bd t. Take the d-derivative of equation (4. Id) to obtain

@, (/,- c,w)a. Thus, one need only solve for and w using the equations

=, =u (=), (=’ +) 0.

One can then solve for from its corresponding equations:

Note that in the special case where is a constant, it is necessary that Oa +wd 0, at rCdd--

and d a, just aS in the paper by Low [1].
5. PLANAR PLASMA MOTION

Suppose that the plaSma velocities (t, ) all lie in the same plane whose normal vector is the constant

vector ’. Without loss of generaJty assume that ’-- , -- (cos -, sin % 0), T- (sin%-cos%O). The

model (3.7)-(3.10) becomes

" (5.i)Xbd a "p sin cos , , "d cos + , p "Td sin cos
2e

?- ,o, , , +2+2( +) o, (.2)

, (, +2d),o,, , --(, + 2d)o , (5.3)

wp -w (5.4)

ere (d,,t) (d,,t).
THEOREM I. In order that the vectors be planar, but not linear, it is necessary that E
PROOF. Suppose that E . Then equation (5.2a) implies "ypcosb 0. If cos 0, then

0 d a, a contradiction. Therefore, "p 0 is necessary. The equations (5.1a,b,c) become bd

a, , cos , and Cp sin cos.
From these equations compute ,, -2"]sin bcos "](cos -sin )cos b, which implies

-dcos 0. Since cos 0, it must be that - 0. Combining this with "y, "p 0 implies- -(t). We now have a and , Xb, 0. Thes imply a, =ap 0, and so equations

imply 0 -t + 2o -. That is, " is a constant and th plaSma motion is linear. []

EXAMPLE 1. We attempt a solution to the planar model where --- (z/r,y/r,O), z rcos% and

y rsin’. Assume that a a(r), w w(r), e e(t,r f(t)g(r), and (r). The model equations

become r - sincosb, 2or Tar +aw, rX-COS b, and et + 2wver + 2(rc2 +wr),e =0. The

assumption of separability of ’ implies f’(t)/f(t) -l-wg’(r)/g(r) -I- ra -l-wr 0. Thus, f(t) exp(-2bt)

and g(r) aexp(f: w(s)-x[b Ta(s) wr(s)] ds) for some constants a and b.
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Moreover, the model equations imply sin cos b a=(ew a,) and cos (b-ra -w,). Taking

the quotient of these two and solving for @ yields

( -r )==- (_nax_w)

The functions md w e detemed by the trigonometMc relations between s and cos , by the equation

r .a,+a. d by the iti data g(r) (O, ) [0()[[.
EXAMPLE 2. There no solution to the otation plma model for motion vectors of the fo

= (-y/r,z/r,O) where y -rcos d z rs. The functions , w, , and @ depend on r, , z,

and t. The mel equations become @ r, @z cos2@+ , @r sincos@- , 0,

t + 2(2 +w) O, r s@cos@, , -cos @, w, 0, and w, -.
omthe equatio compute @r t ways d equate to obt w(cos @) +Us(sin @) O. Simi]ly,

compute @z two ways d equate to obt w(c) a(s) 0. Since cos 0 and sin # 0, i

must that w 0 d 0, a contriction to the umptions of the model.

6. THE GENERAL PLASMA MODEL

Without Io of generty, use the ght-handed ohono system of differentiable vecto

(coss,sins,cos), if= (-cosc,-scos,s), d=x= (sin%- cos%0) where

(t, ) d (t,. The matrices the plums me] (3.7)-(3.10) e given by

sin a cos ] [ cos cos

s + cos sin cos + cos

and

[ -, -, sin ].
The genera] model is extremely complicated in form. However, one can determine necessary conditions

on the plasma velocity for existence of solutions from the comparability condition (3.8a), which in this setting

becomes

The condition (3.10a), s x = , implies p -, sin. Thus, the matrix Q is symmetric. We consider

here the two cases: ed 0 and ed # O.

THEOREM 2. Suppose that d 0. A necessary condition for existence of solutions to the irrotationa]

plasma model is: det Q <_ 0.

PROOF. The computability condition a-Q 0 is a quadratic equation which represents a degenerate

conic section. Factor Q RrAR where R is orhogona] and A is diagonal, say A diag(1,2). The

quadratic equation is then equiva]ent to %1 +2 O where [x 2]T R. If det Q > 0, then

sgn(l) sgn(%2) # 0. Consequently, = , so . But this is a contradiction to [[[[ I. Thus, it is

necessary that det Q _< 0. [

Note that if det Q < 0, then the two equations -’Q 0 and - have four solutions (given in

trn= of ):

It may be that these lead to multiple solutions for the magnetic induction J and scalar function a, for the

same plasma velocity W.

THEOREM 3. Suppose that e # 0. A necessary condition for the existence of solutions to the

irrotationa] plasma model is: det Q _< 0 or sgn(trace(Q)) sgn(t).
PROOF. As in Theorem 2, factor Q AR where R is orhogona] and , diag(%,). One

obtains & quadratic equation f +% e/e where = R. There are no solutions to this equation

if sgn(%x) sgn() -sgn(t). This set of equations is equivalent to det(Q) > O and sgn(trace(Q))
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--sgn(). Therefore it is necessary for existence of solutions to the plasma model that det(Q)

_
0 or

sgn{trace(Q)) sgn{t). []

Define e/e. Suppose that > 0 and - > 0. The quadratic equation in Theorem 3 defines an

ellipse in IR with center at the origin and whose xis lengths {measured from the origin} are

and 12 V/-/A2. If the plasma model has solutions, then it is necessary that this ellipse intersect the unit

circle. This happens if I _< _< 2 or if I _> _> 2. In either case, there are four solutions to a-rQE

and IIII I.

Similarly, if > 0 and < 0, then the quadratic equation in Theorem 3 defines a hyperbola in IR

with center at the origin. The distance from the origin to the hyperbola is given by I N/-/AI. If the

plasma model has solutions, then it is necessaxy that _< 1. In this case, there are also four solutions to

a’rQE and [[I[ 1. Analogous to the setting for Theorem 2, these solutions my produce different

magnetic inductions ] and scalar functions a for the same plasma velocity

7. OBSERVATIONS

One basic assumption for the plasma model is that of electrical neutrality given by @ , 1. One can

interpret this assumption as 0 or one can treat the problem from the point of view of continuous

dependence. In either case, the electric divergence equation cannot be ignored in the development of the

model.

For example, Low [I] had attempted a solution of the solar plasma model of the form {r,t} BI +
B2 + B where z rcos0 and y =rsinO. Consequently, BI 0, S3.r -aB2, (rB:)r arB3,

B2,t rI[(rB:,r)r ,IB2] + (vIB2)r v2B3 v3B2, and B3.t W(r3.r)r + (rVlB3) 0 where the

velocity is given by ’(t, v1(t, r)O + z (v(t, r) + vs(t,r)).
A steady solution of these equations is ](r) ar(l + a:r)-1+ (I + ar

and (r, z) 2}a[-ar(l+ar)-1O=F2a2rz(l+ar2)- where a is an arbitrary constant. It must be pointed

out that these functions do not satisfy equation {1.4). More precisely, the condition { ’-a 0 is

not satisfied. It can be shown that

{I -- 2r2)3 y 0

for a # 0. Moreover, for Izl suiciently large, [[ is large, a contradiction to the assumption of electric

neutrality.

We also provide an answer to a question by Priest [41 on the conjecture of non- normality of initial data

0(z to any smooth initial surface for the force-free model a, 0. These equations are

equivalent to

where A, B, C, D are 4 3 constant matrices whose entries are 0, 1, or -1.

Let s, t) be & C’-surface in ]Rs which cts as the initil surface for ,he force-free model. Define

(s, t) ff(s,t)) as the initial data on the surface. Then

#/, z,= + I/,, + z,, and zt= +t + zt. {7.2)

Consider the equations (7.1) and (7.2) evaluated on the initial surface. Define the 4 column vector

[7, A]r where A is an arbitrary scalar. Then a-D+7, *i, Tt *i, (TA + ,,/- z,’,)= +
(YB + /, /t’,) + (-"X’C + z, ztr), A# 6 0. Therefore,

THEOREM 4. The initial data (s,t) 6 cannot be everyv,here normal on any open subset of the

sure ,}.
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PROOF. Suppose that is normal everywhere on an open subset of the surface. Then K(s, t)o t.
Replacing this in equation {7.3) yields aK[lo tll 0. But c, # 0, o t # , and K # 0, a contradiction.

Thus, b is not everywhere normal to the initial surface. [3

REFERENCES

1. LOW, B.C., Resistive diffusion of force-free magnetic fields in a passive medium, The Astrophysical Journal

181 {1973), 209-226.

2. CHANDRASEKHAR, S. and KENDALL, P.C., On force-free magnetic fields, The Astrophysical Journal

126 {1957), 457-460.

3. JETTE, A.D., Force-free magnetic fields in resistive magnetohydrostatics, J. Math. Anal. Appl. 29

(1970), 109+.

4. PRIEST, E.R., Solar Manetoh,drodynarnics" (Geophyics and Astrophysics Monographs), D.Reidel

Publishing Co., Dordrecht 1984.


