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ABSTRACT. The purpose of this paper is to establish the expansion theorem for a

regular right-definite eigenvalue problem for the Laplace operator in Rn, (n > 2)

with an eigenvalue parameter % contained in the equation and the Robin boundary

conditions on two "parts" of a smooth boundary of a simply connected bounded

domain.
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i. INTRODUCTION.

Regular right-definite eigenvalue problems for ordinary differential equations

with eigenvalue parameter in the boundary conditions have been studied by Fulton

[I], Hinton [2], Ibrahim [3], Schneider [4], Walter [5], Zayed and Ibrahim [6],

Zayed [7] and many others, while in the present paper we shall study regular

right-definite eigenvalue problems for partial differential equations with

eigenvalue parameter in Robin boundary conditions.

The object of this paper is to prove the expansion theorem for the follow-

ing problem:

Let Rn, (n > 2) be a simply connected bounded domain with a smooth

boundary . Consider the partial differential equation

zu:= --ir(-AnU) %u in (I.I)

together with the Robin boundary conditions

u + hl(X)U_ Xu on r (1.2)

and
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u + h2(x)u %u on fF (1 3)

where we assume throughout that
n

(i) A E is the Laplace operator in Rn (n > 2)n
i=l x.
n
7. u (x) (x) denotes differentiation of u(x) along the outward unit(ii) u

i=l
x.

normal (x) (l(X),...,n(X)) to the boundary , where x (Xl,...,xn) is a

generic point in the Euclidean space Rn.
(iii The weight function r(x) is a reaJ-valued positive function with re (),

UB where C() is the space of all HIder continuous functions with

exponent , 0 < < I which are defined on , while ck+() denotes the space

of all functions in ck() whose derivatives are HDlder continuous with exponent =.

(iv) hi(x) (xer) and h2(x) (xer) are non-negative real functions, where r
is a part of the boundary while r is the remaining part of -(v) is a complex number.

If R 0, hi(x) -, h2(x 0, then problem (1.1)-(1.3) reduces to

A u 0 in , (1.4)
n

(1.5)u u on F,

u 0 on fl\F (1.6)

wherein g is an eigenvalue parameter. The eigenvalue problem (1.4)-(1.6) is called

a "Steklov problem", which has been studied by Canavati and Minzoni [8], Odhnoff [9]

and many others. Odhnoff’s approach is to give problem (1.4)-(1.6) an operator-

theoretic formulation by associating with it a semi-bounded self-adjoint extension
operator A and to obtain a direct expansion theorem by using the spectral resolu-

tion of A. Moreover, Odhnoff proved that there exists a complete set of generalized

eigenfunctions of every self-adjoint extension operator A. Canavati and Minzoni

have associated with problem (1.4)-(1.6) a self-adjoint operator L which has compact

resolvent and they have shown that the spectrum of L consists of a sequence {.} of

non-negative eigenvalues such that .+0 as j-. Furthermore, they have derived an

eigenfunction expansion by using a suitable Green’s function.

Recently, Ibrahim [3] has discussed the eigenvalue equation (i.I) together with

the Robin boundary condition

u + h(x)u %u on B (1.7)

where h(x) is a non-negative real function on the whole boundary Bfl. Ibrahim’s

approach is to give the regular right-definite eigenvalue problem (i.I) and (1.7)

an operator-theoretic formulation by associating with it a self-adjoint operator A

with compact resolvent in a suitable Hilbert space H and he has shown that the

spectrum of A consists of an unbounded sequence of eigenvalues {.} such that .-
as j-= and also that the corresponding eigenfunctions of A form a complete

fundamental system in H.

In this paper, our approach is to find a suitable Hilbert space H and an

essentially self-adjoint operator A with compact resolvent defined in H in such

a way that problem (1.1)-(1.3) can be considered as an eigenvalue problem of this

operator.
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2. HILBERT SPACE FORMULATION.

Let L2(), L2(F) and L2(F) be three
r

measurable functions f(x) in , on r and on

(i) I r(x)If(x)l 2 dx <

(ii) flf(x)12 ds I
<

and

(iii) flf(x)[2 ds 2
<

complex Hilbert spaces of Lebesgue

respectively, satisfying

DEFINITION 2.1. We define a Hilbert space H of three-component vectors by

H L2() @ L2(F) L2(3r);
r

with inner product

<f,g> /r(x)fl(x)gl(X)dx + /fz(x)g2(x)dSl + I f3(x)g3(x)dS2,
and norm

(2.1)

(2.2)

llfl12 /r(x) Ifl(x)12 dx + Ilf2(x) 2 dSI
+ I If3(x) 2 dS2,

for each f (fl,f2,f3) and g (gl,g2,g3) in H, where dx~ dxI dxn is the

volume element corresponding to while dS 1 and dS are the surface elements

corresponding to r and F respectively.

DEFINITION 2.2. Let HI be a set of all those elements f satisfying

fecl () C2 (n) and AnfeL2r (n).
We define a linear operator A: D(A)+H by

Af (fl’ f19 + hl(_X)fl’ fl + h2(_x)fl)
for each f (fl,f2,f3) in D(A), in which the domain D(A) of A is defined as

follows

(2.3)

(2.4)

D(A) {(fl, fl r, fln\r )ell:fellI}
where fln, fl r and fl\r are restrictions of f on , on F and on \r
respectively.

REMARK 2.1. The parameter I is an eigenvalue and fl is a corresponding

eigenfunction of problem (1.1)-(1.3) if and only if

f (fl,f2,f3)eD(A) and Af If. (2.5)

Therefore, the eigenvalues and the eigenfunctions of problem (1.1)-(1.3) are

equivalent to the eigenvalues and the eigenfunctions of operator A in H.

REMARK 2.2. D(A) is a dense subset of H with respect to the inner product

(2.2).

LEMMA 2.1. The linear operator A in H is symmetric.

PROOF. Let f (fl,f2,f3) and g (gl,g2,g3) be any two elements in D(A),

then

<Af,g> l{nfl(x_) }I (.x)dx + I{ flg(_x) + hI(_x) fl (x) }2(x)dSl +

+ I {fl(_x) + h2(_x)fl(_X)}3(.x)dS 2.
Making use of first Green’s formula [I0, p. 50] in (2.6), we obtain

(2.6)
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<Af,g> fl/(grad fl’ grad gl)dX_ + fl(X)hl(X)gl(X)dS
+ I fl(X)h2(X)gl(X)dS 2.

where
n

(grad fl’ grad gl 7. (x) (------)
i=l

fix. glx.

Applying a similar argument, it follows that

for xefi

(2.7)

<f,Ag> /(grad fl’ grad gl)dX + F/fl(X)hl(X)gl(X)dS
+ I fl(X)h2(X)gl(X)dS 2.

From (2.7) and (2.8) we find that

(2.8)

<Af,g> <f,Ag>.

Therefore A is a symmetric linear operator in H.

LEMMA 2.2. Let f (fl,f2,f3)ecl() be a complex-valued function.

lfl(x)l 2 dx <_ 162 Y Igrad fl(x) 12 dx + 2 $ If(x) 2 dS
1

+

where

+ 2U I If3(x)2_ dS

PROOF.

Then

(2.9)

Since Ifl(x) is a real-valued function and Ifl(x) le (’), then by

(2.10)

using Theorem 2 in [i0, p. 67], we have
n

I ]fl(X) ]2 dx _< 42 I l {]fl(_X)]x.}2dx + 2 I ]f2(x) ]2 dS
1

+

+ 2B f f3(.x) 12 dS2.n\r
(2.11)

Substituting the inequality

}2 < 4{If{Ifl(x) Ix.
into (2.11) we arrive at (2.10).

1x. (.x) ])2

REMARK 2.3. Since A in H is symmetric, then it has only real eigenvalues.

3. THE BOUNDEDNESS.

We shall show that the linear operator A in H is bounded from below, unbounded

from above and strictly positive.

LEMMA 3.1. The linear operator A in H is bounded rom below.

PROOF. Let f (fl,f2,f3) be any element in D(A). We have

<Af,f> f {A fl(x) }f--)dx + I (fl(X) + hI(x) fl(x) }f2-)dSI +
fl

n r

+ I fly (x) + h2 (x) fl (x) }f-)dS2n\r
By using the first Green’s formula, (3.1) becomes

(3.1)

<Af,f> I Igrad fl(x)] 2 dx + I hl(X) lf2(x)] 2 dS + fI

With 8 max(16V2, 2, 2}, Lemma 2.2. gives the inequality

h2(.x) f3(.x) 2 dS
2

(3.2)
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I

f I If3(x) 12 dS
2
< I Igrad fl(x) 12 dx.Ifl(x) 2 dx- I If2(x) 2 aS I

\r

Substituting (3.3) into (3.2), we have

(3.3)

i i
<Af,f> > f r(x) Ifl(x) 12 dx + I{hl(x)-l}If2(x) 2 dS I

+

+ {h2(x)-l}If3(.x) 12 dS
2
> Col Ifl 12

where
iC

o min{ inf r--’ inf [hl(X)-l] inf [h2(x)-l]}.

This proves that the linear operator A in H is bounded from below.

(3.4)

(3.5)

(i) Since r(x) > 0 for xe, and if hi(x) > I for xeF and if h2(x) > I for

xeF then C > 0 and consequently the linear operator A in H is strictly
o

positive. We assume these conditions on h (x) and h2 (x) for the reminder of

the paper.

(ll) Since A in H is strictly positive, then A 0 is not an elgenvalue of A

in H.

LEMMA 3.2. The linear operator A in H is unbounded from above.

PROOF.

a sequence of this test function in D(A) by

XN(X) x(Nx), xe, N 1,2

By using the same argument of Lemma 3.1, we find that

<AXN,XN> >_ CIN411XNI 12
where C

1 is a positive constant.

Taking the limit as N-: in (3.6), we obtain

Let X (x) be a test function with the compact support on and define

(3.6)

lim <AXN,XN> . (3.7)
N

In other words, A is unbounded from above.

REMARK 3.2.

(i) Since A in H is bounded from below, then the set of all eigenvalues of A is

also bounded from below by the constant C defined by (3.5).
o

(ii) Since A in H is unbounded from above, then the set of all eigenvalues is too.

DEFINITION 3.1. The linear operator A in H is said to be essentially self-

adj oint if

(i) A in H is symmetric

(ii) (A + iE)D(A) and (A iE)D(A) are dense in H, where E is the identity operator

and i --T (see [I0, p. 172]).

REMARK 3.3. Since A in H is symmetric, then +/-i cannot be an eigenvalue of A.

LEMMA 3.3. The linear operator A in H is essentially self-adjoint.
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PROOF. We must prove that (A + iE)D(A) is dense in H.

first of all, suppose that (A + iE)D(A) is not dense in H.

non-zero element 0 # f (fl,f2,f3)EH such that

<f,(A + iE)g> 0, g (gl,g2,g3)ED(A).
By using the same argument of Lemma 2.1, we find that

<(A- iE)f,g> 0, gEcl()C2(fl),
which means that (A- iE)f 0 and consequently Af if.

Since fEH, it follows that AfEH. Thus fED(A) and since f O, then +i must

be an eigenvalue of A. This contradicts the fact that A in H is symmetric.

Similarly, we can show that (A iE)D(A) is dense in H.

Suppose the contrary;

Then there exists a

4. THE RESOLVENT OPERATOR.

Since % 0 is not an eigenvalue of the linear operator A in H, then the

inverse operator A-I of A exists in H. To study the operator A-I it is convenient

to give an explicit formula for it in terms of the Robin’s function R(x,y) for the

Laplacian A on ft.
n

Here it is difficult to characterize D(A-I) R(A), the range of A, exactly.

In any case, it is not true that

D(A-I)--{(flfl, fl r,
because for such an f we cannot in general find u (Ul,U2,U3)ED(A) with Au f.
Hence we define A-I in H by

D(A-I) {(fl, fl F, flflXF)eH:feCS(-}
and

A-I:D(A-I) H,

A-I f /R(x,Y)fl(Y)r(y)dy,

for each f (fl,f2,f3)ED(A-l).

(4.1)

/R(x,Y) f2 (Y) dS I R(x,y) f3(Y)dS2) (4.2)

REMARK 4.1.

(i) D(A-I) is dense in H.

(ii) A-I is a linear operator in H.

The Robin’s function R(x,y) for fixed xE is a fundamental solution of y
with respect to (see [i0],[ii]), i.e.,

R(x,y) S(x,y) + K(x,y)

where S(x,y) is a singularity function defined as follows:

1 2-n
(n-2) lx-yl~ for n > 2,

S (x,y) n

2--- lglx Y for n 2,

which is the solution of the equation u 0 for x y, where denotes the

surface of the unit bali in Rn, while K(x,y) is a regular function satisfying
the foIIowing:

(4.3)

(4.4)
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and

(i)

K(x,y)eC1() C2(},
A K(x,y) O in ,
n

K (x,y) + hl(Y)Kx,y) =-{S (x,y) + hl(Y)S(x,y)} on F,

K (x y) + h2(Y)K(x,y) -{Sv(x,y) + h2(Y)S(x,y)} on

DEFINITION 4.1. We define the linear operators BI, B2, B
3

as follows:

D(BI) {uem2():ueC()}
r

BlU f R(x,y)u(y)r(y)dy,

for each

(ii) D(B2) {ueL2F):ueC)},

B2u fR(x,y)u(y)dSl,
for each ueD(B2).
(iii) D(B3) {ueL2( F) :ueC()},

B3u f R(x,y)u(y)dS2,
for each u+D(B3).

REMARK 4.3.

(i) With reference to [i0, p. 128] we conclude that the linear operators

BI,B2,B3 are compact in L2(), L2(F), L2(F) respectively. Consequently,
r

formula (4.2) shows that A-I is also compact.

(ii) From Lemmas 2.1, 3.1, 3.2 and theorem 3 in [I0, p. 60], we deduce that

the set of all eigenvalues of A, counted according to multiplicity, forms an

increasing sequence

0 < C < %1 < %2 < < %j < %. as

(iii) Since A in H is symmetric, then A-I in H is also symmetric.

(iv) Since D(A-I) # H, then only the closure of A-I is self-adjoint.

(v) On using theorem 3 in [i0, p. 30] we deduce that the density of D(A) in H

gives us the completeness of the orthonormal system of the eigenfunctions

i,2,3, of the operator A.

5. AN EXPANSION THEOREM.

We now arrive at the problem of expanding an arbitrary function fell in terms

of the eigenfunctions {j}’--l of the operator A.

The results of our investigations are summarized in the following theorem:

THEOREM 5.1. The spectrum of A consists of an unbounded sequence of real

eigenvalues of finite multiplicity without accumulation point in (-=,=).

Denoting them by

0 < %1 < %2 < %3 <

and the corresponding eigenfunctions by i,2,3, we have {j}=j=l forms a

complete fundamental system in H and for every fell we have the expansion formula

f Z <f,.>. (5.1)
j=l

in the sense of strong convergence in H.
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The above theorem has some interesting corollaries for particular choices

of the function fell.

COROLLARY 5.1. If f (fl,f2,0)eH, fleL2r( and f2L2(F) then we have

fl(x) 7. Ir(x)fl(x)jl(X)dx + If2(x)j2(x)dSl}jl(X),
j=l a r

f2(x) 7. Ir(x)fl(x)0 (x)dx + If2(x)Oj2(x)dSl}Oj2(x),
and

0 fr(x)fl(x)0jl(x)dx + f2(x)0j2(x)dS1}0j3(x).

COROLLY 5.2. If f (fl,O,f3)eH fleL2r(n) and f3eL2(F)
fl(x) fr(x)fl(x)O (x)dx +

0 r(x)l(X)*j
(x)dx *

and

f3 Z /r(x)fl(x)Ojl(X)dx + I f (x)%j (x)dS2}* (x).

COROLY 5.3. If f (0,f2,f3)eH f2eL2(F) and f3eL2(n)
0 Z /f2(x)j (x)dS + I f3(x)j3(x)dS2}jl(X),

j=l r 2 I ak r

f2(x) Z {/f2(x)*j2(x)dSl + I f3(x)*j (x)dS2}* (x)

f2(x)j2(x)dS1
+ f f3(x)0j (x)dS2}0 (x).

f3 (x) j 3(.x) dS2}j i

f3(x)j 3(x)dS2}j 2 (x),

then we have

then we have
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