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SUMMARY

The classical theorems of Taylor, Lagrange, Laurent and Teixeira, are

extended from the representation of a complex function F(z), to its derivative

F(V)(z) of complex order v, understood as either a ’Liouville’ (1832) or a ’Rieman

(1847)’ differintegration (Campos 1984, 1985); these results are distinct from,

and alternative to, other extensions of Taylor’s series using differintegrations
(Osler 1972, Lavoie & Osier & Tremblay 1976). We consider a complex function
F(z), which is analytic (has an isolated singularity) at , and expand its derivative

of complex order F(V)(z), in an ascending (ascending-descending) series of

powers of an auxiliary function f(z). yielding the generalized Teixeira (Lagrange)
series, which includes, for f(z)=z-, the generalized Taylor (Laurent) series. The

generalized series involve non-integral powers and/or coefficients evaluated by
fractional derivatives or integrals, except in the case v=0, when the classical

theorems of Taylor (1715), Lagrange (1770), Laurent (1843) and Teixeira

(1900) are regained. As an application, these generalized series can be used to

generate special functions with complex parameters (Campos 1986), e.g., the

Hermite and Bessel types.

KEY WORDS AND PHRASES. Fractional Derivatives, Generalized
Taylor and Laurent Series, Special Functions, and Generalized
Cauchy Integral.
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I INTRODUCTION
The ordinary concept of n-th derivative (primitive) can be extended from

positive v=+n (negative v=-n) integral order to rational, real or complex order v,

by generalizing any of the definitions in the classical theory of functions: (i) the

limit of the Leibnitz-Newton incremental ratio is generalized to a limit of finite

differences, which yields an algebraic definition of derivative of complex order
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(Grunwald 1867; Butzer & Westphal 1974); (ii) the classical integral along the

real axis, when extended to fractional order (Liouville 1832; Riemann 1847;

Weyl 1971), leads to a concept of integration with complex order (Erdelyi 1940;

Kober 1940); (iii) the Cauchy loop-integral can be extended to complex
exponent, leading to the appearance of branch-cut(s), and requiring a suitable

choice of paths of integration (Letnikov 1868; Nekrassov 1888; Lavoie &
Tremblay & Osier 1974; Nishimoto 1984; Campos 1984). The theorems of

expansion in series of ascending powers associated with Taylor (1715) and

Lagrange (1770), occupy a central position in the theory of functions, and the

series of Laurent (1843) and Teixeira (1900), which also involve descending

powers, are useful to classify singularities in the complex plane. It is therefore
natural, that we seek generalizations of these four classical theorems, in the

context (iii) of differintegration of complex functions.

When considering the differintegration of complex functions, it is

important (Lavoie & Osier & Tremblay 1976) not to confuse different systems,
viz., there is a distinct system of differintegration, for each set of branch-cuts in

the complex plane (Campos 1984). The ’degenerate’ case when branch-cuts are

,absent is the ordinary derivation (Whittaker & Watson 1902). The next two

simplest, and most useful cases, are (Campos 1985) the ’Liouville’ (1832)

[’Riemann’ (1847)] systems of differintegration, which correspond to indefinite

(Weyl 1917) [definite (Erdelyi 1940; Kober 1940)] real integrals (Ross 1974;

Oldham & Spanier 1974), and, in the complex plane, to an Hankel (1864) path
[Pochhammer (1890) double-laced loop], about a semi-infinite (Nishimoto 1984)
[finite (Lavoie & Tremblay & Osier 1974)] branch-cut. Extensions of the Taylor’s
theorem (Osier 1971), and other series expansions involving differintegrations
(Osier 1970a,b, 1972a,b, 1973), have appeared in the literature. Our approach
to the generalization of Taylor’s, Laurent’s, Lagrange’s and Teixeira’s theorems,

differs in two respects: (i) the former gives series expansions for the complex
function F(z), whereas we represent its differintegration F(V)(z); (ii)we consider

not only ’Riemann’ differintegrations along closed loops, but also ’Liouville’

differintegrations along open paths.
The method of generalization of the series of Taylor, Laurent, Lagrange and

Teixeira, outlined in the present introduction (1), is similar to the classical

proofs, with two important differences: (i) the differintegration of of analytic
functions (functions with one branch-point), requires the use of Hankel paths
(teardrop loops), in the ’Liouville’ (’Riemann’) system (2); (ii) in both systems
of differintegration F(V)(z) of the function F(z), the generalized Cauchy integral
involves non-integral powers, and binomial instead of geometric series are used.
For an analytic function F(z). its differintegration F(V)(z) is expanded in

ascending integral powers {f(z)}k of an auxiliary function, with coefficients
which involve differintegrations; this yields the generalized Lagrange series

(3), which contains, as particular case f(z)=z-, the generalized Taylor series.

For a function F(z) with an isolated singularity at z=, there are ascending

integral and descending non-integral powers, with coefficients specified by
integrals with respectively non-integral and integral powers; this yields the

generalized Teixeira series (4), which includes, as particular cases, the
generalized Laurent series for f(z)=z-, and also, all the other series listed in the
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diagram, and whose regions of convergence are illustrated in Figures 1 to 4. it

goes beyond the scope of the present paper to explore the extensive

applications of these series expansions, so that the discussion (5) is confined

to two examples, namely, the generation of Bessel (Hermite) functions of

complex order using the expansion of a ’Liouville’ differintegration in a singular

(regular) form of the extended Laurent (MacLaurin) series.

2 DIFFERINTEGRATION IN SINGLY- AND DOUBLY-CONNECTED REGIONS

We precede the derivation of series expansions for the differintegration

dVF/dzv of a complex function F(z), by recalling the definition (Campos 1984) in

a suitable form; since we seek expansions in powers of an auxiliary analytic

function f(z), we replace the independent variable z by f(z), and define

dV{F(z)}/dV{f(z)}, i.e. the differintegration of F(z), with complex order v, with

regard to f(z]. We consider first the case in which F(z) is analytic at z, and both

for the ’Liouville’ (’Riemann’) differintegrations, in the case F(z) has no branch-

points (a branch-point at b):

DEFINITION 1 (differintegration of an analytic function). The Liouville’

(’Riemann’) differintegration dV{F(z)}/d{f(z)}v, with complex order n, of the

function F(z) analytic at =z, and without branch-points (with a branch point at

=b), with regard to an auxiliary analytic function f(z), is defined by:

dV{F(z)]/d{f(z)] Vm {rf+V)/2i] JLF() {f()- f(z)]-v-] f,() d, (1)

where the path of integration L is the Hankel contour (teardrop loop) in Figure
1 (Figure 2), going round =z in the positive direction, and starting and ending

at infinity = (the branch-point =b), so as to surround the semi-infinite

(finite) branch-cut from =z to =o (=b).

Remark 1: In the case of the ’Riemann’ differintegration, the teardrop loop has

finite length, and no convergence problems arise. In the case of the ’Liouville’

differintegration, the Hankel path extends to infinity, and an asymptotic

condition is required to assure convergence, e.g., the function F(z) must decay

sufficiently fast relative to f(z) in a sector about the branch-line:

arg{f(z)} < arg() < arg{f(z)} + 5: F() {f()} (2)

for some ,>0.

Remark 2: In the ’Liouville’ (’Riemann’) differintegration (1) v cannot be a

negative integer (and, further, the exponent of F()=(-b) G() at the branch-

point =b must satisfy Re()>-l). These restrictions on v (v and } are not

essential, and can be removed by modifying the Hankel path (Campos 1984)

[teardrop loop (Campos 1985)] into other shapes.
Besides the differintegration of an analytic function (1), which lead to the

extended Lagrange and Taylor series (3-4), we also need, for the extended

Laurent and Teixeira series (5-6), the definition of differintegration in the
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neighbourhood of a singular point =z. For the ’Liouville’ (’Riemann’)

differintegration, we consider two Hankel paths (Figure 5) [teardrop loops
(Figure 6)], connected by lines AB and CD, taken in opposite directions. The
function F(0 is analytic in the interior of the composite path, so that (I) holds.

In the limit A D and B C, the integrals along AB and CD cancel, and we are

left with the integral (1) along the two paths, taken on opposite directions, viz.,

positive for the outer, and negative for the inner path:

DEFINITION 2 (differintegration of a function with an isolated singularity): The

’Liouville’ (Riemann’) differintegration dV{F(z)}/d{f(z)}v, with complex order v, of
the analytic function F(), with an isolated singularity at =z, and no branch-

points (a branch-point at =b), with regard to an auxiliary analytic function f(z),

is defined by:

{2ni/I-11+v}} DV{F(z)}/f{f)}v f F(;) {f(;) f(;)}-v-,

f,. F(n){f(rl) fn)}- f’(n) d(rl)

f ’()d(;)-

(3)

as the difference of the same integrand, takenin the positive directions, along
an outer L and an inner Hankel path (Figure 3) [teardrop loop (Figure 4)],
around the same semi-infinite (finite) branch-cut, joining =z to =-0 (=b).

Remark 3: The substance of remarks and 2 applies to Definition 2 as well as to
Definition 1, e.g., the asymptotic condition (2) assures convergence along both

Hankel paths L and , in Figure 3.

We have thus covered all four cases of differintegration DV{F(z)}/D{f(z)]v, for
(i) F(z} analytic or with an isolated singularity at =z, and (ii) with or without

branch-point at =b.

Besides these preliminaries on the dependent function F(z), we also need

some preliminaries on the independent function:

Lemma 1 (singly-connected region defined by an analytic function): The region

D defined by the analytic function f(z):

R > 0: D {z:lf(z)l < R} 4

has boundary D-)D given by:

}D {’;:If(;)l R }, D-0D {z: If(z)l < R }; (5a,b)

the region De defined by:

igD= :lf(z)l<R-e --DEC D (6)

is a closed sub-region of D (Figure 7).
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Proof: By the maximum modulus principle, if f{z) is analytic in a region, the

maximum of If(z) lies on the boundary. Hence, considering the region D(4), we

must have fl fl max=R on the boundary )D, and fl <R in the open interior D-

OD. If we impose a lowerbound fl <R-e with 0<e<R, we obtain a closed region,

lying entirely within D-/)D. QED.
If the function f(z) is analytic and non-zero, we can also define an inner

boundary, and obtain doubly-connectcd region:

Lema 2 (doubly-connected region defined by an analytic function without zeros:

The region D defined by the analytic function f(z) without zeros:

R > r > 0: D z: _< If(z)l < R }, {7)

is doubly-connected with inner )E and outer D boundaries:

(8a,b)

and interior:

D c)D- )E [z: < If(z)l < R }; (9)

the region:

0<,; t+8<R-r:{z:r+<_lf(z)l<_R-:}Dt.C D, (10)

is a closed sub-region of D (Figure 8).

Proof.-Since f(z) is analytic and non-zero, I/f(z) is also analytic, and the maxima

of fl and 1/Ifl lie on the boundary. In the case of the region (7), the outer
boundary (8a) is the maximum of If l, and the inner boundary (8b) the maximum
of 1/[fl, i.e., minimum of If l, leaving (9) as the interior. Choosing a lower upper
bound ]fl <_R-e, and a higher lower bound fl>r+8, in a compatible way R-E>r+8,

leads to a closed region (10), lying entirely within D. QED.

Remark 4: The open interior (closed sub-region) will be relevant to absolute
(uniform) convergence of series.

Remark 5: The singly- (doubly-) connected region of Lemma 1 (Figure 7)
[Lemma 2 (Figure 8)] is relevant to analytic (singular) functions; they are drawn

together in the case of compact (ring-shaped) regions, bounded by one (two)
closed loop(s), in Figure 1 and 2 {3 and 4), with either Hankel paths (Figure 5)
or teardrop loops (Figure 6}, respectively for ’Liouville’ (Figures 1 and 3) and
’Riemann’ (Figure 2 and 4) differintegrations.

:$ (IBBRALIZATION OF TATIR’$ ANI) IGRAIC,I’$ TI-IF.,ORII$

We consider first the expansion of the differintegration of a complex
function F(z}, with regard to an auxiliary function f(z), at a regular point:
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THEOREM 1 (generalized Lagrange series): The differintegrations dn

FV{(z)}/d{f(z)]v, with complex order v. of a complex function F(z), with regard to

an auxiliary function f(z), can be expanded in a series of ascending integral

powers of the latter:

d
v
[F(z)]/d[f(z)] v= E At If(z)] k.

(II)

with coefficients specified by a differintegration of non-integral order:

Ak (k!)
-]

lira (/)//))v+k F() {f()/(-a)]
-v-kd

f’
{-" [12)

It is assumed that the dependent F() and independent f() functions are both

analytic at =z, and that the latter has a simple zero f(z)=0f’(a) at =a. The

series (11) converges absolutely (uniformly) in the open region D-)D (5b)
[closed sub-region De (6)], where R is the largest positive real number, such that

the region D (4) excludes all singularities of F(z).

Remark 6: The teardrop loop L in Figure 2, which is used in the ’Riemann’

differintegration of a function F(0. analytic at =z and with a branch-point at

=b, can be continuously deformed into the boundary /)D of the region of

convergence of the generalized Lagrange series. Therefore the latter is exact

provided that lZlz-bl + e. for some e > 0.

Remark 7: The Hankel path L in Figure 1, which is used in the ’Llouvllle’

dtfferintegration of a function F() analytic at =z and without branch-points

extends to infinity, and as long as R is finite, cuts the boundary/)D of the region

of convergence of the Lagrange series, at two points =+. The integrals along

the paths L and OD, taken between the points + and _, are equal, say to a value

,. The integral along /)D differs from , by a term 0(+- -). which vanishes as

R--,oo, because + - - The integral (1) along L differs from . by a term not

exceeding:

(13)

using the asymptotic condition (2), an upper bound can be estimated for (13),

vlz.:

A < 2M f," fRe(v)-t [f_B[Retvq df

<4M f-l-:df= {4M/(l+e)} x
(14)

where M,B are constants. The expression (14) vanishes A - 0 as R - oo, because

xminf{Re(+ )}- and e > 0. Thus the Lagrange series for the ’Llouville’

dlfferintegration is exact as R - oo. i.e. for F(z) a polynomial or integral function,
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with infinite radius of convergence.
The remark 6 (Remark 7) indicates conditions under which we may

interchange integrals along the teardrop loop (Hankel path) L and along the

boundary /)D of the region of convergence, in the proof of the generalized

Lagrange series, for ’Riemann’ (’I,iouville’) differintegrations:

Proof: The definition of differintegration (1), with complex order v, of the

function F(z) with regard to the auxiliary function frO, involves a non-integral

power, which may be expanded in a binomial series:

-v-I
v-l)[f()- f(z)} Z [-f(z)] If()

-v-l-k

(15)

whose radius of convergence is If(z) If(01 R, i.e. it converges absolutely in

the open interior (Sb) of (4), and uniformly in the closed sub-region (6).

Therefore, the series (15) may be integrated term-by-term along the boundary
0D of the region of uniform convergence De, leading to a series (11) of integral

powers of f(z), with coefficients given by:

-v-14

Ak {(-)k/k!} {r(l+v)V(-v)/2xi r(-v-k)} F() {f()} f’ (Od=

-v-l-k
{F(1 +v + k)/k!2i} F() f() f’ () d.

{16}

Since the auxiliary function f(z) is assumed to have a simple zero at z=a:

-v-k-I
f(a) 0 f’(a): g(,a) F() {f()/(-a)} f ’(), (17)

the function (I 7) is analytic at =a, and may be used to evaluate (16)"

Ak--- {F(I+v + k)Ik!2i} f -v-k-I
0v+k

v+k
g(,a) (-a) d (k!) lim {g(,a) }/)

-" [18}

where the differintegration (1) was used. Substitution of (17) into (18), leads to

the coefficients (12) of the generalized Lagrange series (1 I), proving its uniform

convergence in the closed sub-region De (6). In order to prove absolute

convergence in the larger open interior D-/)D (5b) of D (4), we note that the

coefficients (16) have an upper bound:

< 2)-11 f(OI--1 ML, {19}

where L denotes the length of bD. and M an upper bound of the analytic function

G(0 --- r(l+v) F(0 f(0" thus the series of moduli of (I I) is bounded by:

]-Re(v)-k-I[Ad[f(z)lk<_ (ML/2n:) (1)1 Ifz)lk [f()
(20)

a constant times the series of moduli of (15). It follows that the absolute

convergence of the binomial series (15), in the open interior D-/)D (5b) of D (4),
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proves the absolute convergence of the generalized Lagrange series in the same
region. QED.

The simplest auxiliary function f{) which is analytic, and has a simple zero
at =a, is:

]f()] -a: Ak (k!)
-!

lira av+k F/)
v+k

{21}

for which the coefficients (12) simpllify to (21), and the generalized Lagrange
series {14} reduces to:

THEOREM 2 (generalized Taylor series): The differintegration F(Vl(z), with
complex order v, of a function F(z) analytic at z=a, can be expanded in an
ascending series of integral powers:

F()(z) ,y_. {(z-a)/k!l F’ (a)
(22)

whose coefficients involve differintegrations of non-integral order at a. If --- is

the singularity of F(z) closest to =a, then R lq-al is the radius of convergence
of the series (22), i.e. it converges absolutely (uniformly) in the open circle

a <R (closed sub-circle z-al _<R-e, with 0<e<R).

Remark 8: The Remark 6 (Remark 7) about ’Riemann’ (’Liouville’)

differintegrations of generalized Lagrange series, also apply to the generalized
Taylor series, which is the particular case of the former, in which the region of

convergence becomes a circle. The former includes regions of different shapes,
depending on the function f(z), e.g.: (i) for sin z l<R we have an ’oval’ region;

(ii) for lexp(zn) l<R we have a non-compact region consisting of angular sectors

extending to infinity. In the generalized Lagrange series we require that the

auxiliary analytic function f(z) be such that (4a) be a closed loop, e.g. f(z) sin z

is admissible but f(z) exp(zn) is not.

Remark 9: The original Taylor and Lagrange series are obtained setting v=0

respectively in (22) and (10, II), in which case differintegrations are not
needed (they do not appear for v any integer).

Since the Taylor series:

F(z)= E {f00 (a)/k!} (z-a) k,
(23)

converges uniformly in z-a <R-e with 0<e<R, the ’Riemann’ differintegration of

the power (Lavoie & Osler & Tremblay 1976):

d
v [(z-a)k}/dzV= [k!/Tfl+v-k)} (z-a) kv, (24)

may be applied term-by-term (Campos 1984) to the r.h.s, of (23). The l.h.s, of
(23) is an analytic function, to which we can only apply a ’Liouville’

differintegration DVF/Dzv. Since the ’Liouville’ and ’Riemann’ differintegrations,
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with non-integral order v. are generally incompatible (Lavoie, Osler & Tremblay

1976), we may expect the two expressions to be distinct:

THEOREM 3 (extended Taylor series): The ’Liouville’ differintegration DVF/Dzv,
with non-integral complex order v. of an analytic function F(z), is distinct from

the extended Taylor series, of non-integral powers, about a regular point z=a:

v eC- Z: D
v F/DzV : E {Fern) (a)/F(l+v-m)} (z-a)

m-v

which has the same region of convergence as the generalized Taylor series (22).

Proof: Since the extended Taylor series (25) has the same region of

convergence as the generalized Taylor series (22), they may be compared at all

points. For v a complex number other than an integer, the series cannot

coincide, because one has integral {22) and the other has non-integral (25)

powers. QED.

Remark 10: If v=n is a positive integer, then the series (25) starts with m=n,

’and on substitution m=k+n coincides with (22), because in this case the

’Liouville Dn/Dzn and ’Riemann’ dn/dzn differintegrations coincide with the

ordinary n-th derivative. The generalized (22) [extended (25)] Taylor series,

with v a non-integer complex number differ in (i) having integral (non-integral)

powers, (ii) coefficients involving differintegrations (ordinary derivatives), and

in (iii) having no branch-cuts (a branch-cut from z=a to

4 IXTIII$IONS OF LAIIRINT’$ ANI TIIXIIRA’B $IRIF

Having considered (in 3) power series expansions, for the

differintegration dvF/dlv of a complex function F(z) with regard to an auxiliary
analytic function f(z), at a regular point, we proceed (4) to consider an isolated

singularity:

THEOREM 4 (generalized Teixeira series): The differintegration
dV{F(z)]/{d{f(z)]v, with complex order v, of a complex function F(z), with regard
to an auxiliary analytic function, can be expanded, in the neighbourhood of an

isolated singularity z=a, in a combined series of ascending integral (descending

non-integral) powers of the auxiliary function:

dV{F(z)}/d{f(z)}V E Ak if(z)} k+ einVE Ak {f(z)}
k=0 k=l (26)

with coefficients Ak (A-k) with k=0,1 (k=1,2 involving an integration of non-

integral (integral) powers of the auxiliary function, along the outer 0D (8a)

[inner 0E (8b)] boundary of the region D (7) of convergence:

,,": AI,-- {l-’(l+v+k)/k!2rtil I._ F() f() -v-k-l
k=O,l f’() d,

{F(v+k)/k!2:i} / F’() f()}
-v-

df(),
(27)
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k=l A.--IF(v+k)/(k-l)!2rti} f] F(rl) {f(rl)}
ka

f’(rl)drl,

{r(v+k)/k!2ti} .( F’(q) {f(rl)}kdf(rl). (28)

The auxiliary function f(z) is assumed to be analytic, and to have a simple zero

f(a}=0#f’{a} at the isolated singularity z=a of F{z). The series (26) converges
absolutely (uniformly) in the open interior D-bD-bE {9) [closed sub-region De,i
{10)] of D {6), where R is the largest real positive number such that D (6} does

not contaln any singularity of F{z}, and r satisfies 0<r<R.

Remark 10: The Remark 6 (Remark 7) concerning the ’Riemann’ (’Liouville’)

dlfferintegratton for the generalized Lagrange series, apply equally well to the

outer teardrop loop (Hankel path) L and boundary DD of the region D of

convergence of the generalized Teixeira series; for the latter, stmflar conditions

apply to the Inner teardrop loop (Hankel path) and inner boundary DE of the

region of convergence D of the generalized Teixeira series, as Illustrated in

Figure 4 (Figure 3}. In the case of the ’Liouville’ differintegration we could let

r,R - with a constant ratio R/r =- const > 1.

The Remark 10 indicates the conditions in which the Inner /. {outer L)

path of dlfferintegration (3) may be replaced by the inner DE (outer DD)

boundary of the region of convergence, in the proof of the generalized Teixeira

series, which is similar to that of the generalized Lagrange series (In 3), with

two Integrals tn {3) instead of one in (1):

Proof’. The first (second) integral on the r.h.s, of the dlfferintegration (3) near a

singular point z=a, involves a non-integral power, which can be expanded in the

ascending {15) Idescending {29)1 binomial series:

f(rl) f(z) -’ i ,,,-) ’=-e E( f(rl) f(z)

(29)

The ascending (15) [descending (29)I binomial series converge absolutely in the

interior (exterior) of the outer D (8a) [inner 3E (8b)] boundary, and converge
uniformly in a closed sub-region defined by f(z)<R-e(If(z) l>r+5), with e,5>0 and

e+i<R-r. Thus, in the closed sub-region De,5 (10), both series (15) and (29)

converge uniformly, and they can be integrated term-by-term, after substitution

respectively on the first and second integrals on the r.h.s, of the singular

differintegration (3); this leads to the generalized Teixeira series (26), with

coefficients Ak (A-k) of the ascending (descending) integral (non-integral)

powers, specified by:

-v-k-I
k=O....."Ak= B f() [f()} f’() d,

(30)

k=l ....."Ak= B I f(rl) {f(rl)}kf’(rl) drl,
(3 I)

where the constant B is given by:
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B={(-)k/k!} {F(l+v)F(-v)/2rti F(-v-k)} F(l+v+k)/k!2ni. (321

The expressions (30) and (311 with (321, coincide with the first expressions in

respectively (27) and (28): the second expressions in (27) and {281 are

obtained from the first via an integration by parts. Having proved the uniform

convergence of the generalized Teixeira series (26) in the closed sub-region Dr,8
(I0), we proceed to prove the absolute convergence in the open interior (9);

the latter follows by noting that (15) and the ascending series in (26) converge
absolutely inside the outer boundary DD, and (29) and the descending series in

(26) converge absolutely outside the inner boundary DE. The proof of the second

statement uses (29) and (311, in the same way as the proof (191 and (20) of the

first statement, viz.: (i) the coefficient (3 I) has an upper bound:

IA.d < IF(-v)/I-’(-v-k)l (k!2rt) If(rl)l
k

(33)

where is the length of the loop DE, and m a bound on the analytic function G{rl)
f’(rl) F(l+v)" (ii) the series of moduli of the second term on the r.h.s, of (26)"

k -Rc(v>k-IE IA,_ll If(z)l -Revl-k- _< (ml/2) E I(vl)l If(rl)l If(z)l
1=0 k=O (34)

is bounded by the series of moduli of (29) multiplied by a constant; (iii) thus the

absolute convergence of (29) outside the inner boundary DE, implies that of the

second term on the r.h.s, of (26). QED.
Using the simplest auxiliary analytic function f{z)=z-a with a simple zero at

z=a, the generalized Teixeira series (26;27,28) simplifies to:

THEOREM 5 (generalized Laurent series): The differintegration F(Vl(z), with

complex order v, of a complex function F(z), in the neighbourhood of an isolated

singularity z=a, can be expanded in a combined ascending (descending) series

of integral (non-integral) powers of z-a:

e
irtx, -v-kF(V)(z) Ak (z-a)k+ , Ak(z-a)

(35)

with coefficients Ak (A-k) given by an integral along an outer (inner) circle of

radius R(r<R), of a non-integral (integral) power:

-v-k-I
k=O oo: Ak {F(l+v+k)/k!2:i (-a) F() d,

,-, (36)

k=l ..... A.k {F(v+k)/fk-1)!2:i
f
[ (rl-a)

k-
F(rl) d,, (371

If z=c is the singularity of F(z) closest to z=a, we set 0<r<R Ic-al, the series
(35) converges absolutely (uniformly) in the open ring r< z-al<R (closed sub-
ring r+e<l z-a _<R-8, with e,8>0 and e+8<R-r).
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Remark I I: The Gamma functions disappear from the coefficients (36,37) in

the case v=0:

k=0 : Bk (2hi)
(38)

,:,,,: B.k (2hi) - f] (l’]-a)
k-1

F(rl) drl,k=l
* (39)

of the original Laurent series:

F(z) E Bk(z-a)k"
{40)

which satisfies the same convergence conditions as the generalized Laurent

series in Theorem 5.

Remark 12: The region of validity of the generalized Laurent series is a circular

annulus, whereas the generalized Teixeira series holds. As in Remark 8, the

auxiliary analytic function f(z) must be such that the conditions If(z) l=r and

If(z) l--R specify closed loops, with the former inside the latter for r<R, and the

series converges in the annulus in between them.
Since the series (40) converges uniformly for r+e<Iz-al<R-5, it may be

differintegrated term-by-term, in the ’Riemann’ system (23), leading to an

extended Laurent series, which is distinct from the ’Liouville’ differintegration
of F(z), with non-integral order v:

THEOREM 6 (extended Laurent series): The ’Liouville’ differintegration

DVF/Dzv, with non-integral (integral) order v, of a complex function F(z), with

an isolated singularity at z=a, is distinct from [equal to) the extended Laurent

series, combining ascending and descending non-integral powers of z-a:

t c- z,
{k!/T(l+k-v)} B re(z-a)

m-v

*F(v) (z) if V e Z, / {41

with coefficients given by (38,39), and having the same region of convergence
as the generalized Laurent series (35.36,37).

Proofl The extended (41:38,39) and generalized (35;36,37) Laurent series have

the same region of convergence D. i.e. can be compared at all points of D. For v

not an integer the series cannot coincide, for one (35) has some integral

powers and the other (41) none. In the case v=n an integer, the series (41)

starts at m=n and proceeds in ascending powers, as does (35) starting at k=-n;

setting m=-k the two series are found to coincide. QED.

Remark 13: The relationship between the generalized (35;36,37) [extended
(41;38,39)] Laurent series, is similar to the Taylor case in Remark 9, i.e. they
differ in (i) having some (all) powers integral (non-integral), in (ii) some (all)
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coefficients being integrals of non-integral (integral) powers, and in (iii) having
no branch-cut (a branch-cut from z=a to z=oo).

Ii DISCUSSION
The consistency of the singular (4) [regular (3)] series, both of the

generalized Teixeira (Theorem 4) [Lagrange (Theorem 1)] type, and in the case

of generalized Laurent (Theorem 2) [Taylor (Theorem 5)] series, and extended
Laurent (Theorem 3) [Taylor (Theorem 6)] series, can be verified by noting that:

(i) If the function F(z) is analytic at z=a, the inner loop )E (circle z-al=r) can be
shrunk to zero, and so vanish the coefficients A-k (28) [A-k (37), B-k (39)] of the

descending powers of the generalized Teixeira (26) [generalized (35), extended

(41) Laurent] series: (ii) these reduce to the generalized Lagrange (11)
[generalized (22), extended (25) Taylor] series, since the coefficients Ak (27)

INk (36), Bk (38)] of the ascending integral powers can be evaluated, using the

differintegration (1), as Ak (12)[Ak (21), Bk=F(k)(a)/k! in (23)]. This result

implies the following hierarchy of series, represented in the diagram: (i) the

generalized Telxeira series is the most general, since it represents a singular
differintegration in powers of an auxiliary function; (ii) the second level consists

of the generalized Laurent (Lagrange) series, which is obtained by imposing one

restriction, namely, the auxiliary function f(z)=z-a (a regular differintegration);
(Ill) imposing both restrictions leads to the third level, namely, the generalized
Taylor series; (iv) the generalized Laurent (Taylor) series are not equivalent to
extended Laurent (Taylor) series, which are at the same level, viz., the second

(third). Note that in the diagram, the series on the left (right) are regular
(singular). Some of the consequences of these four valid series expansion

theorems, e.g. the rule of implicit differintegration, the Identification of the

principal parts of a differintegration near a pole or essential singularity, and the

generalized Mlttag-Leffler series of fractions for the differlntegration of

meromorphic functions, are presented elsewhere (Campos 1989a,b). We
conclude with two examples of application to special functions, namely, the use
of the generalized Laurent [MacLaurin (1742)] series, with ’Liouville’

dlfferintegration, to obtain a generating function for Bessel (Hermite) functions

of complex order.

We start with the Hermite function:

Property 1 (Hermite function as ’Liouville’ differintegration): The Hermite

function Hv(z), of complex order v and variable z, is specified by a ’Liouville’

differintegration of the Gaussian function:

Hv (z) einv eZ2DV{el/DzV. (42)

Proof: By (1) with f(z)=z, the ’Liouville’ differintegration is equivalent to the

integral representation for the Hermite function:
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H, (z) {F(I +v)/’2rri ef ’’’ -v-1
(z-j) e- d,

{43)

which is known (Courant & Hilbert 1953). QED.
An alternative representation is:

Property 2 (Hermite function as limit of a differintegration): The Hermite

function is fled by the following limit of a ’Liouville’ differintegration:

Hv (z) lira o3v{exp(-
V

+ 2z)l/d
r.,o (44)

Proof: Perform in (43) the change of variable q=z-, to obtain the integral

representation:

-v-1 eVl e- 2z dr1Hv(z) {T(I +v)/2zi q
-,,,, 4 5)

which may be interpreted as the limit as q --) 0 of a ’Liouville’ differintegration
with order v of the exponential. QED.

The expression (44) suggests that we consider the generalized MacLaurin

series, i.e. generalized Taylor series (22) about the origin a=0, for the ’Liouville’

differintegration of the function in curly brackets in (44), viz.:

2 v k v+k
a"lexp(- + 2rz)l/a y_. (,/k!) lim (a/aD e-; +2;.

k=0 -0 (46)

since the exponential is an integral function, the radius of convergence is R=,

and thus the series (46) for the ’Liouville’ differintegration is exact, according to

Remark 7. Substitutirig (44) into (46), we obtain:

Property 3 (generating differintegration for Hermite functions): The ’Liouville’

differintegration:
2 v k

a"{exp(- + 2z)}/a (/k!) Hv+k(z),
k--0 (47)

when expanded in a generalized MacLaurin series (47), with infinite radius of

convergence, specifies as coefficients of the powers k of the parameter , the

Hermite functions of complex orders v,v/ 1

Remark 14" The differintegrations are not needed v=0 for the generation of

Hermite (1884) polynomials:

2 k

exp(- + 2z)= (/k!) Hk(Z).
k--0 (48}

In the case of Bessel functions, we start from the integral representations"

Property 4 (integral representations for Bessel functions): The Bessel function

jr(z) of complex order v and variable zo has the integral representations"
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J v (z) zv/2i exp{-z2/)/2} d

-lft) -v-1
(2i) exp{z(rl-l/q)/2l drl

(49}

Proof: The first expression appears in the literature (Watson 1944), and the
second can be deduced from the first by means of a change of variable =Iz.
QED.

The integral representation of the Bessel (49) [Hermite (41,42] function
|nvoles an integrand which has no branch-point at =0, implying that we should
use the ’Liouville’ differintegration in both cases; also, the integrand is a
polimorphic (analytic) function, because rl=0 is an esential singularity (regular
point} of the integrand in (49) [in {45], implying that the generalized Laurent
(MacLaurin) series should be used. for the differintegration which generates
Bessel (Hermite) functions of complex order:

Property 5 (generating differintegration for Bessel functions)" The ’Liouville’
differintegration:

}V{exp(z(--l/)/2}/} {F(l+v+k)/k!} Jv+k(Z) +
k=0

+ ei F(v+k)/(k-1)} k (z),

{50}

when expanded in generalized Laurent series about the ogin, th infinite

radius of convergence, specifies, as coefficients of the ascending integr
{descending non-integral} powers of the parameter , the Bessel functions

{coefficients} of complex {integral} orders v,v+ 1 {-1,-2 }.

Proof: Since the exponential in the integrand of (49}, has no singularities other
than two essential singularities at the origin =0 and infinity =,, its generalized
Laurent series expansions about the origin has infinite radius of convergence,
and, by Remark 7, the corresponding ’Liouville’ differintegration, leads to an

exact series:

v k
+
,cV{exp(z(-1/)/2}/o3 , ak Z. a.k e inv

{51)

The coefficients ak (a-k)"

k=O....."ak -= {F(l+v+k)/k!2xi f*
{F(l+v+k)/k!} Jv+k(Z), {52)

k=l : a {I-’(v+k)/(k-l)!2i r

{F(v+k)/(k-1)!} J(z),

k-1 ez(.rl_l/q2 drl,

(53)
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are evaluated in terms of Bessel functions {coefficientsl using [491. Substituting
(52) and (53) in (51) leads to (50). QED.

Remark 15: The differintegrations are not needed v=0, for:

exp{z(-l/)/2} J(z)
(54)

the generation (Schlomilch 1857) of Bessel coefficients.

HIERARCHY OF SERIES

F{z} analytl

generalized
TEIXEIRA (I 900)

Theorem 4
(26:27,28}

f(z)=z-a

generalized
LAGRANGE (1870)

Theorem 1
(11:12)

f(z}=z-a

generalized
LAURENT (1843)

Theorem 5
(35;36,37

generalized
TAYLOR 1715)
Theorem 2

(22)

not ,
equivalen

extended
TAYLOR (I 715)
Theorem 3

(2S)

extended
LAURENT (1843)

Theorem 6
(41;38,39)

analytic

DIAGRAM
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Figure 1 The Hankel loop L used in the ’Liouville’ differintegration of a function
analytic at =z, touches at the points +, the boundary D of the region of
convergence of the generalized Lagrange series, which is assumed to be a closed
loop, which becomes a circle of radius R in the particular case of the
generalized Taylor series.
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"igure 2- The same closed loop (circle) of convergence of the generalized
Lagrange (Taylor) series D, does not touch, and can be continuously deformed
onto, the teardrop loop L, used in the ’Riemann’ differintegration of a function
analytic at =z, and with a branch-point at =b.
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Figure 3- The ’Liouville’ differintegration of a function with an isolated

singularity at =z, uses an inner and an outer L Hankel path, both about the
same semi-infinite branch-cut joining =z to infinity, which intersect the inner

DE and outer D closed-loop boundaries, of the doubly-connected regions of

convergence of the generalized Teixeira (Laurent) series, respectively at the

points . and l+.

Figure 5- One of the elements of Figure 3, is the pair of inner ] (outer L) Hankel

paths, taken in the negative (positive) directions, around the same semi-infinite

branch-cut joining infinity to =z. which is a singularity surrounded by a

composite path, which also includes the segments AB and CD, which cancel in

the integration of an univalent function.
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Figure 4- The ’Riemann’ differintegration of a function with an isolated

singularity at =z, and a branch-point at =a, involves an inner and an outer L

teardrop loop, both about the same finite branch-cut joining =z to =b, which

can be deformed continuously, respectively onto the inner DE and outer D
boundary, of the region of convergence of the generalized Teixeira (Laurent)

series, whose boundary is a closed loop (circle).
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Figure 6-One of the elements of Figure 4, is the pair of inner L (outer L)

teardrop loops, going clock- (counterclock-) wise around the same finite
branch-cut joining =z to =b, which is surrounded by a composite loop, also

including the segments AB and CD. which cancel in the integration of an

univalent function.

D

Figure 7- The other element in Figures 1 and 2, is region D of convergence of

the generalized Lagrange (Taylor) series, has a closed loop (circle) as boundary

D and hence is simply-connected, leading to absolute convergence in the open
interior D-)D, and uniform convergence in a closed sub-region De.

8D

/,," ,’ J
/ ,’,,"aE )., ,’ /

ure 8- The second element in Figures :3 and 4, is the ring-shaped (annulus)

D of convergence of the generalized Teixeira ILaurent) series, which has closed

non-Intersecting loops (concentric crcles) as inner DE and outer OD boundaries,

and hence is doubly-connected, leading to absolute convergence |n the open

Interior D-OD-OE, and uniform convergence in a closed sub-region De,i
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