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ABSTRACT. A simple independent integral equation technique is presented to solve an

Integral equation with a logarithmic kernel which governs solutions of many two-

dimensional Dirlchlet boundary value problems involving two coplanar and parallel

infinite strips. The technique is further illustrated by an example.
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I. INTRODUCTION.

Solutions of many two-dlmenslonal Dirlchlet boundary value problems involving two

equal coplanar and parallel strips: 0 < b < Ixl < a, y O, < z < % are governed

by a Fredholm integral equation of the first kind with logarithmic

{2p + logl4(x2 x)l},- b < x, x < a, in which the known function as well askernel

the unknown function are even degree functions and p is a known constant.

In order to solve this integral equation, both sides are first differentiated

with respect to x2 to reduce it into a singular integral equation with kernel

(x2 x)-I- which can be easily Inverted by the known technique (Lowengrub and

Srivastava [I] and Jain and Kanwal [2]. The solution of this singular Integral

equation contains an unknown constant which is evaluated by substituting this solution

in the original integral equation wlth logarithmic kernel. Unfortunately, the process

of evaluating this unknown constant is very tedious.

We present here a simple independent technique to solve a Fredholdm integral
2

equation of the first kind with logarithmic kernel {2p + log14 {x
2 Xl)l} b < x,

x < a, in which the known function as well as the unknown function are even degree

functions and p is a known constant. By simple substitutions, this equation is first
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transformed into a Fredholm integral equation of the first kind with logarithmic

kernel {2q + logl2(cosS cOS0L)l}, 0 < S, I < where q is a known constant.

Finally using the Fourier series expansions of the known functlon of this integral

equation and its kernel, the constant coefficients in the Fourier series expansion of

its unknown function are readily obtained by appealing to the orthogonal property o
cosines of the multiples of angle over the interval [0,]. Thus we have obtained

the Fourier series expansion of the unknown function of this integral equation which

readily yields the required solution of the given Fredholm integral equation by

appeallng to the substitutions already used. We also explain here that this series

solution of the given integral equation can be reduced to the closed form obtained by

the known methods [L,2]. Finally we illustrate the application of our technique to

solve the Fredholm integral equation of the first kind with logarithmic kernel

{2p+logl4)(x2 x)l},- b < x, x < a, p being a known constant when the known even

degree function is Ixl.

2. INTEGRAL EQUATION TECHNIQUE.

Solutions of many two-dlmenslon Dirlchlet boundary value problems involving two

equal coplanar and parallel strips: 0 < b < Ixl < a, y 0, < z < , Is governed

by an Integral equation of the form

-b a

-a b
(2.1)

where f(x2)- is a known even degree function, p is a constant and g(x 2
is an unknown

even degree functlon.

When we substitute in the integral equation (2.1)

it takes a simpler form

a
2 2 2S Xl*CX (2p+lgl4(x-xl>l} dx -" fCx >,

b
b < x < a. (2.3)

In order to solve this integral equation by the known method [1,2], we first

differentiate its both sides with respect to x2 and get,

a xl@(x)dx w f,(x2),S 2 2bx -x
b < x < a, (2.4)

where the singular integral is a Cauchy principal value. The solution of this

integral equation is known to be [1,2]
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b
2 .)1/2 2 2

2
C

x a a x xf’(x )dx +---(
2 2

2 2 2 2 /2
(x 2 2

b (2 b
2)

x Xl [(a b )]a x
xl (x

b < x! < a,

(2.5)

where the constant C is to be evaluated by puttlng this value of (x2
1) in (2.3). This

process of evaluation of the constant C Is very tedious as clearly shown In the

illustrated example given at the end.

We present here a simple independent method of solving the integral equation

(2.3) without dlfferenttatlng its both sides. First in (2.3) we make the

substitutions

where

2
x Acos01 + B,

2
x Acos0 + B,

(2.6)

2
b
2 2

b
2

a a +A
2

B "--------, (2.7)

0 < 0, 0[ < a when b < x, x < a, and get

f h(01) {2q+logl2(cos0 -cos01)l} d01 -F(0), 0 < 0 < t

0

where

h(0I) sins (x ), (2.9)

q p+log(a2-b2) I/2.

F(0) f(x2).

Now the Fourier series expansion of the known function F(0)

where

" F(0) c
o

+ c cosn0, 0 < 0 < .
n-I

C [ F(O) cosn0 dO
n 0

f f(x2) roan0 dO, n 0,1,2,...
0

are known coefficients and the formula

cos nO cosnO
togl2(o,0 co,O) -2 1 nn-I

0 < 0, 01 < ,

lead the integral equation (2.8) to the form

(2.12)

(2.13)
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w cos ne cos ne

0
f - do + dn cos n0I} {2q- 2n__l" n

= C
O

+ . CnCosnO, 0 < O < 7, (2.14)

where we have used the following Fourier series expansion of the unknown

function h(el):

h(0I) =- d
o

+ . dncoSnOl, 0 < 01 < . (2.15)
nffil

The values of the constant coefficients dn, n 0,I,2,... in this expansion are

readily obtained from equation (2.14) in terms of the known coefficients Cn, n

0,I,2,... by appealing to the orthogonal property of Cosines of the multiples of

angle e over the interval 0 < e < 7. These values are

C
d ___o_ d

n ffi-(nCn)/ n (2.16)
o 2wq

where the values of the known coefficients Cn are given in relations (2.12). Lastly,

using the relations (2.9), (2.15) and (2.16) we obtain the required value of the

function @(x) of the integral equation (2.3)unknown in the form

@(x 2 2 ,2_b2 {Col(4q) " nC cosne (2.17)
[(a -xl)(x n=l

n

where the relatlon between cose and x is given in the substitutions (2.6) and we

have used the following formulas readily derived from this relation:

2 2 2 2e x b e a x i/2 (2 18)

We now explain that the series solution (2.17) of the unknown function @(x21 can

be put in the closed form (2.5) which is derived by the known technique [1,2] and

contains an unknown constant C. When we integrate by parts, we obtain the integrals

which define the values of the Cn in relations (2.12), as

C A "=--f slnne.slne.f’(x2)de, n > I, (2.19)
n n 0

where we have used the relation between x2 and Cose defined in the substitutions

(2.6). Substitution of these values of the coefficients Cn, n > in the series

solution (2.17), gives

(x21 AT2 f(x2)de + f (l_cose)f,(x2)de
, 0
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A
tan sin0.+ (l+cs01

0

f’(x2)d0
(cos0 cos0 I) }’ b < x < a, (2,20)

where we have used the relation

sin0
slnn0 cosn0 2- (cos0-cos0)

stnO l+cSOl
"T4c-7;-d" + ,,:,;d-<7<; d) 0 < O, O[ < 7, (2.2i)

readily derived from the formula (2.13) by differenttatlng both sides with respect

to 0. Finally, when we use the substitutions (2.6), relations (2.7) and (2.18) in the

expression (2.20), we obtain

2
a x[(x2)dx

a 2 2
(a -x )1/2+ ! (xf’ (x2))dx

a_-x )1/2(xf ))dx2 Xl < a+ (x-b2j
b (x2-b2 x- x

}’ b < (2.22)

which agrees with the known result (2.5), and the value of the unknown constant C in

the known result (2.5) is thus also evaluated by our technique and its value is

C 2
a

xf(x2)dx a 2 2

, {- [(a2_x2)(x2_b2)]
+ x-_" xf’(x2)dx} (2.23)

This appears to be a new result.

3. N ILLUSTRATIVE EXAMPLE.

To illustrate our technique, we solve the integral equation (2.3) when

so in this case

x
2f(x) Cx, f’(x) =---=-_, f’( _.

2/x 2/x2
(3.1)

Solution of this equation by the known technique [2] is obtained by using the formula

(2.5) and in this case, e have

@(x) x21-b2 w

a -x 0

sln
2 0

01 20 20 1/2(sln2 --- sin 5) [l-K2sln

C

[(a 2 2 2
b
2 1/2x i) (x
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2 2
x -b 2_b2 2 1/2)]r a c2)l/2 F(, (1-c)=-!- (-f---)/2[na (g’ 2 2’ (-
a- x a -x

C+
[( 2 2 2_b2 i/2, b < Xl < a,

a -x. )(x.
(3.2)

where we have used the substltut[ons (2.6), the relati’ons (2.18), and is the elllpt[c

integral of the third kind

8
n(,n2,K) f da

2 V/20 (l-n2sin2a)(l-K2sln a)

K
2

l-c c b/a, and F(,K) is the elliptic integral of the first kind.

(3.3)

?
this case the solution (x) of the integral equation (2.3) given by the equation

(3.2) still contains the unknown constant C which is finally evaluated by substituting

value of (x) in the integral equation (2.3) and evaluating some complicatedthis

definite integrals.

The required value of C, in this case, is given by [2]

c a [(I .. - I) E(, X) + F( ,K)], (3.4)

where E(,K) is the elliptic integral of the second kind.

By substituting the above value of the constant C in the equation (3.2), we

obtain the required solution of the integral equation (2.3), in this case, by the

known technique [1,2]. We readily obtain the solution of the integral equation (2.3)

by our technique, in this case, by putting the values of f(x2), f’(x 2) from the

relations (3.1) in the formula (2.22) and this is given by

(x21) 2a F(,K)E(,K)2 2 Z 2 ]2 { E(-,K) +

[a-Xl)(Xl-b )]

2
b2a ,K) F(,K)]}, b < x < a.+ (x2 b2) Ill (, 2 22a2 a -x

(3.5)

This agrees with the solution given by the equations (3.2) and (3.4) which was derived

by the known technique [1,2].
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