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ABSTRACT. Given a subset S of {1,...,n} and a map X: {l,...,n} [-I,I}, (i.e. a

coloring of {l,...,n} with two colors, say red and blue) define the discrepancy of S

with respect to X to be dx(S) I X(i) (the difference between the reds and blues

on S). Given n subsets of {l,...,n}, a question of Erdos was to find a coloring

of {l,...,n} which simultaneously minimized the discrepancy of the n subsets. We give

new and simple proofs of some of the results obtained previously on this problem via

an Inequality for vectors.
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1. INTRODUCTION.

The problem of Erdos that we are interested in this note can be formulated as

follows: For a subset S of {l,...,n} and a map X: {l,... ,n} {-I,I}, i.e. a coloring

of {l,...,n} wth two colors, say red and blue, define the discrepancy of S with

respect to X to be dx(S) I X(1)l, which is the difference between the reds and

o s. b ,...,sk
o ,...,, pob, , o d =oo=gblues X

which minimizes dx(Si) simultaneously for l=l,...,k.

A simple reduction (see [I], [3]) shows that we may assume k < n in the above,

and so for the rest of the note we shall consider the case of k=n, i.e. n subsets

of {l,...,n}. It is easy to see [3] that there are subsets SI"’’’Sn such that for

every coloring X, max dx(Si) )c 4n for some constant c > O. In the other direction,
i

there have been a numoer of results [I], [2], [3], with the best possible result being

obtained in [4] (recently, a generalization and an improvement in some cases of the

results in [4] has been obtained in [6]):

din max dX(Si) < c/n (1.1)
X i <n
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for some c > O. Most of these results are obtained in a simple fashion from certain

probabIllstlc inequalities, with the exception of the result (l.l) in [4] (and the

results in [6]), which are more involved.

We give a very simple proof of some of the results obta[ned prior to (I.I), in

Ill, [2], [3]. The proof is based on a geometrical inequality for vectors. The use

of this inequality in the context of combinatorial problems appears to be new. This,

and the fact that the inequality also seems to be of use for other combinatorial

problems, serves as the motivation for this note.

2. MAIN RESULTS.

In order to state the inequality, recall that for a vector x (Xl,...,xn) in Rn:

n 1/p
for p <

i n

The desired inequality, is a special case of a general class of inequalities which can

be found in [5]. For any vectors v.,..,v in Rn and any 2 & p < ,
n

n

2
n X I=I

Here the sum over is over all colorings X: {1,...,n} {-1,1} (in (2.1), for a
n

P is f course simply y. IxilP). The theorem we prove is:

bie=1 Rn

Then for any 2 p < ,

p)l/p 1/2+1/p (2.2)

where the sum over X is over all colorings X.

(b) For any SI,...,Sn, which are subsets of {l,...,n} and any 2 p <

n

(l__2n IX i.11 dx(St)P)I/p g ,/ nl/2+l/P (2.3)

(c) For any SI,...,Sn, which are subsets of {1,...,n},

(max dx(St))P)I/P- /2 en log n
tn

(2.4)

for 6 p g 2 log n.

In particular (2.3) in the above theorem implies that there is a X (since (2.3)

averages over all X) such that
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n I/2+I/p. dx(Si )p)I/p ,/ n (2.S)

Inequality (2.5) may be found tn [3] with p replaced by a non-explicit function of

p. Also (2.4), with p implies that there is a coloring X so that

max dx(Si) (2en log n)
1/2 (2.6)

i n

(2.6) can be found in [1] and [2] with a different constant instead of 2-. The

proof of the above theorem follows at once from (2.1).

llp

(2.).

(b) To the sets St, i=l,...,n we associate the incidence vectors vj, J=l,...,n where

vj(i) if j g S
i
and 0 otherwise for i=l,...,n. Note that for any X,

n
/...+ I1

(c) From (2.3) we have

(I___ . (max dx(SI))P) I/p
n
I/2+I/p

2n X in

(2.8)

Notice that the left hand side of (2.8) is an increasing function of p. Hence
1/2+l/p

letting Po(n) 2 log n, which minimizes p n we have for p Po(n) that

I/2+I/Po e n log n.(I_ . (max dx(SI))P)I/P on
2n X i n

REMARK. Notice that the results in (b) and (c) of the above theorem can be

Imporved if we have some idea of the structure of the Si, since then we can estimate

their incidence vectors vi better.
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