JUAN DE DIOS PEREZ and FLORENTINO G. SANTOS

Departamento de Geometria y Topologia Facultad de Ciencias. Universidad de Granada 18071-GRANADA. SPAIN

(Received April 25, 1990)

ABSTRACT. We classify certain real hypersurfaces of a quaternionic projective space satisfying the condition $\sigma(R(X,Y)SZ) = 0$.

KEY WORDS AND PHRASES: Quaternionic projective space, real hypersurface. 1980 AMS SUBJECT CLASSIFICATION CODES: 53C25, 53C40.

1. INTRODUCTION.

Let M be a connected real hypersurface of a quaternionic projective space QP^n , $n \ge 2$, with metric g of constant quaternionic sectional curvature 4. Let ξ be the unit local normal vector field on M and $\{\psi_1, \psi_2, \psi_3\}$ a local basis of the quaternionic structure of QP^n , (See [1]). Then $U_1 = \psi_i \xi$, i=1,2,3 are tangent to M. It is known, [3], that the unique Einstein real hypersurfaces of QP^n are the open subsets of geodesic hyperspheres of QP^n of radius r such that $\cot^2 r = 1/(2n)$. This paper is devoted to study real hypersurfaces M of QP^n satisfying the following condition

$$R(X,Y)SZ + R(Y,Z)SX + R(Z,X)SY = 0$$
(1.1)

for any X,Y,Z tangent to M, where R denotes the curvature tensor and S the Ricci tensor of M. Concretely we prove the following:

THEOREM 1. Let M be a real hypersurface of QP^n , $n \ge 2$, satisfying Condition (1.1) and such that U_i , i=1,2,3, are principal. Then M is an open subset of a geodesic hypersphere of QP^n of radius r, $0 < r < \pi/2$, such that $\cot^2 r = l/(2n)$.

Clearly condition (1.1) is weaker than R.S=0. Thus we also obtain

COROLLARY 2. The unique real hypersurfaces of QP^n , $n \ge 2$, satisfying R.S=0 and such that U_i , i=1,2,3, are principal are open subsets of geodesic hyperspheres of radius r, $0 < r < \pi/2$, such that $\cot^2 r = 1/(2n)$.

COROLLARY 3. A real hypersurface of QP^n , $n \ge 2$, with U_i , i=1,2,3, principal cannot satisfy the condition R.R=0.

Where for any X,Y tangent to M, $R(X,Y).T = \nabla_X \nabla_Y T - \nabla_Y \nabla_X T - \nabla_{[X,Y]}$ for any tensor field T on M, (see, for example, [5]).

2. PRELIMINARIES

Let X be a vector field tangent to M. We write $\psi_i X = \phi_i X + f_i(X)\xi$, i=1,2,3, where $\phi_i X$ denotes the tangential component of $\psi_i X$ and $f_i(X) = g(X, U_i)$. From this, [4], we have

$$g(\phi_{i}X,Y) + g(X,\phi_{i}Y) = 0, \qquad \phi_{i}U_{i} = 0, \qquad \phi_{j}U_{k} = -\phi_{k}U_{j} = U_{t}$$
(2.1)

for any X and Y tangent to M, i=1,2,3 and (j.k.t) being a cyclic permutation of (1,2,3).

From the expression of the curvature tensor of QP^n , [4], the equations of Gauss and Codazzi are given respectively by

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + \sum_{i=1}^{3} \{g(\phi_{i}Y,Z)\phi_{i}X - g(\phi_{i}X,Z)\phi_{i}Y + 2g(X,\phi_{i}Y)\phi_{i}Z\} + g(AY,Z)AX - g(AX,Z)AY$$
(2.2)

and

$$(\nabla_X A)Y - (\nabla_Y A)X = \sum_{i=1}^{3} \{f_i(X)\phi_i Y - f_i(Y)\phi_i X + 2g(X,\phi_i Y)U_i\}$$
(2.3)

for any X,Y,Z tangent to M, where A denotes the Weingarten endomorphism of M. The Ricci tensor of M has the following expression

$$SX = (4n+7)X - 3\sum_{i=1}^{3} \{f_i(X)U_i + hAX - A^2X$$
(2.4)

for any X tangent to M, h being the trace of A.

If U_i , i=1,2,3, are principal and have the same principal curvature α , this is constant, [4], and from (2.3) it is easy to see that

$$2A\phi_{\mathbf{i}}AX = \alpha(A\phi_{\mathbf{i}} + \phi_{\mathbf{i}}A)X + 2\phi_{\mathbf{i}}X + 2f_{\mathbf{k}}(X)U_{\mathbf{j}} - 2f_{\mathbf{j}}(X)U_{\mathbf{k}}$$

$$(2.5)$$

for any X tangent to M, where (i,j,k) is a cyclic permutation of (1,2,3).

3. PROOF OF THEOREM 1.

Let Z be a tangent field to M, orthogonal to U_i , i=1,2,3, and principal with principal curvature λ . Then, from Condition (1.1) and (2.4) we have

$$(4n+7+h\lambda-\lambda^2)R(U_1,U_2)Z + (4n+4+h\alpha_1-\alpha_1^2)R(U_2,Z)U_1 + (4n+4+h\alpha_2-\alpha_2^2)R(Z,U_1)U_2 = 0$$
(3.1)

where α_1 is the principal curvature of U_i , i=1,2,3. From (3.1) and the identity of Bianchi we obtain

$$(3+h\lambda-\lambda^2)R(U_1,U_2)Z + (h\alpha_1 - \alpha_1^2)R(U_2,Z)U_1 + (h\alpha_2 - \alpha_2^2)R(Z,U_1)U_2 = 0$$
(3.2)

that is,

$$(3 + h\lambda - \lambda^2 - h\alpha_1 + \alpha_1^2)R(U_1, U_2)Z + h\alpha_2 - \alpha_2^2 - h\alpha_1 + \alpha_1^2)R(Z, U_1)U_2 = 0$$
(3.3)

From (2.2), (3.3) gives $h\alpha_2 - \alpha_2^2 - h\alpha_1 + \alpha_1^2 = 2(3 + h\lambda - \lambda^2 - h\alpha_1 + \alpha_1^2)$. Changing (U_1, U_2) in (3.1) by (U_2, U_3) or (U_3, U_1) , respectively, we obtain

$$h\alpha_{i} - \alpha_{i}^{2} + h\alpha_{j} - \alpha_{j}^{2} = 6 + 2h\lambda - 2\lambda^{2}, i \neq i, j = 1, 2, 3$$
(3.4)

From (3.4) we get

$$h(\alpha_i - \alpha_j) = \alpha_1^2 - \alpha_j^2 \tag{3.5}$$

thus either $\alpha_i = \alpha_j$ or $\alpha_i + \alpha_j = h$.

Let us suppose that $\alpha_1 \neq \alpha_2 = \alpha_3$. Then $\alpha_1 + \alpha_2 = h$. Thus α_i , i=1,2,3, must satisfy the equation $\alpha^2 - h\alpha + \alpha_1\alpha_2 = 0$. Then we have $(hA - A^2)U_i = \alpha_1\alpha_2U_i$, i=1,2,3, and from (2.4)

$$SU_i = (4n+4+\alpha_1\alpha_2)U_i \tag{3.6}$$

From (3.4) we also have $h(\alpha_1 + \alpha_2) - \alpha_1^2 - \alpha_2^2 = 6 + 2h\lambda - 2\lambda^2$, but $h = \alpha_1 + \alpha_2$. Thus $\alpha_1 \alpha_2 = 3 + h\lambda - \lambda^2$. This means that for any Z orthogonal to U_1 , i=1,2,3, $(hA - A^2)Z = (\alpha_1\alpha_2 - 3)Z$, and from (2.4),

$$SZ = (4n + 4 + \alpha_1 \alpha_2)Z \tag{3.7}$$

From (3.6) and (3.7), M must be Einstein. But this is a contradiction (see [3]). Thus $\alpha_i = \alpha_j = \alpha$, $i \neq j$. Then α is constant and from (3.4) we have

$$3 + h(\lambda - \alpha) - \lambda^2 + \alpha^2 = 0 \tag{3.8}$$

But from (2.5), $\phi_i Z$ is also principal and its principal curvature is $\mu = (\lambda \alpha + 2)/(2\lambda - \alpha)$. Thus we also get

$$3 + h(\mu - \alpha) - \mu^2 + \alpha^2 = 0 \tag{3.9}$$

Then from (3.8) and (3.9) we obtain that either $\lambda = \mu$ or $\lambda + \mu = h$. If $\lambda = \mu$, λ must satisfy the equation $\lambda^2 - \lambda\alpha - 1 = 0$. If $\lambda + \mu = h$, λ must satisfy the equation $\alpha\lambda^2 - 2(\alpha^2 + 4)\lambda + \alpha^3 + 5\alpha = 0$. In both cases all the principal curvatures are constant. Thus, [3], M must be an open subset of either a geodesic hypersphere or of a tube of radius r, $0 < r < \pi/2$ over QP^k , 0 < k < n-1. It is easy now to see that the only ones satisfying (3.8) are open subsets of geodesic hyperspheres of radius r, $0 < r < \pi/2$, such that $\cot^2 r = 1/(2n)$, (see [3]). This concludes the proof.

It is also easy to see that these real hypersurfaces cannot satisfy the condition R.R=0, and then Corollary 3 is proved because R.R=0 implies R.S=0.

ACKNOWLEDGEMENT: Research partially supported by GIST Grant PS 87-0115-C03-02

REFERENCES

- 1. ISHIHARA, S. Quaternion Kahlerian Manifolds, J. Differential Geometry, 9 (1974), 483-500.
- 2. KI, U.H., NAKAGAWA, H. and SUH, Y.J.: Real Hypersurfaces with Harmonic Weal Tensor of a Complex Space Form, (Preprint).
- MARTINEZ, A. and PEREZ, J.D.: Real Hypersurfaces in Quaternionic Projective Space, <u>Ann. di Mat., 145</u>(1986), 355-384.
- PEREZ, J.D. and SANTOS, F.G.: On Pseudo-Einstein Real Hypersurfaces of the Quaternionic Projective Space, <u>Kyungpook Math. J., 25</u>(1985), 15-28.
- RYAN, P.J.: Homogeneity and Some Curvature Conditions for Hypersurfaces, <u>Tôhoku Math. J.</u>, 21(1969), 363-388.