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ABSTRACT. We classify certain real hypersurfaces ot a quaternionic projective space satisfying

the condition tr(R(X, Y)SZ) O.
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1. INTRODUCTION.
Let M be a connected real hypersurface of a quaternionic projective space QP", , >_ 2, with metric g
of constant quaternionic sectional curvature 4. Let be the unit local normal vector field on M and

{x,2,a} a local basis of the quaternionic structure of Qpn, See [1]). Then y ,, i=1,2,3 are

tangent to M. It is known, [3], that the unique Einstein real hypersurfaces of QP’ are the open

subsets of geodesic hyperspheres of Qpn of radius r such that cot2r 1/(2n). This paper is devoted

to study real hypersurfaces M of QP" satisfying the following condition

R(X,Y)SZ + n(Y,Z)SX + R(Z,X)SY 0 (1.1)

for any X,Y,Z tangent to M, where R denotes the curvature tensor and S the Ricci tensor of M.
Concretely we prove the following:

THEOREM 1. Let M be a real hypersurface of QP", n _> 2, satisfying Condition (1.1) and such

that U,, i=1,2,3, are principal. Then M is an open subset of a geodesic hypersphere of QP" of radius

r, 0 < r < /2, such that cot2r I/(2n).
Clearly condition (1.1) is weaker than R.S=0. Thus we also obtain

COROLLARY 2. The unique real hypersurfaces of QP", n >_ 2, satisfying R.S=0 and such that

y,, i=1,2,3, are principal are open subsets of geodesic hyperspheres of radius r, 0 < r < ,r/2, such that

cot2r 1/(2n).
COROLLARY 3. A real hypersurface of Qpn, _> 2, with U,, i=1,2,3, principal cannot satisfy

the condition R.R=0.

Where for any X,Y tangent to M, R(X,Y).T-VxVyT-VyVxT-V[x,F for any tensor field T on

M, (see, for example, [5]).
2. PRELIMINARIES

Let X be a vector field tangent to M. We write ,X OiX +.f,(x), i=1,2,3, where Oix denotes

the tangential component of ,x and f,(x)= g(x,u,). From this, [4], we have

g(c),X,Y)+g(X,c),Y)=O, 0,U, 0, jUk -):Uj =U (2.1)
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for any X and Y tangent to M, i=1,2,3 and (j.k.t) being a cyclic permutation of (1,2,3).
From the expression of the curvature tensor of QP", [4], the equations of Gauss and Codazzi

are given respectively by

and

3

R(X,Y)Z 9(Y,Z)X-9(X,Z)Y + E {9(,Y,Z),X-g(c,X,Z),Y +

+ 2g(X, ,Y),Z} + g(AY, Z)AX g(AX, Z)AY (2.2)
3

(VxA)Y-(VyA)X E {f,(X)e,V- f,(Y),X + 29(X,,Y)U,} (2.3)
,=1

for any X,Y,Z tangent to M, where A denotes the Weingarten endomorphism of M. The Ricci

tensor of M has the following expression

SX (4n + 7)X 3Z {f,(X)U, 4- hAX A2X (2.4)

for any X tangent to M, h being the trace of A.
If V,, i=1,2,3, are principal and have the same principal curvature 0‘, this is constant, [4], and from

(2.3) it is easy to see that

2A,AX a(A, + ,A)X + 20,X + 2fk(X)U 2f.(X)Ut: (2.5)

for any X tangent to M, where (i,j,k) is a cyclic permutation of (1,2,3).
3. PROOF OF THEOREM 1.

Let Z be a tangent field to M, orthogonal to U,, i=1,2,3, and principal with principal curvature,. Then, from Condition (1.1) and (2.4) we have

(4n + 7 + hA A)R(U,U2)Z + (4n + 4 + h0. 0.)R(U2, Z)U + (4n + 4 + h0‘ 0‘)R(Z,U)U 0 (3.1)

where a, is the principal curvature of U,, i=1,2,3.
From (3.1) and the identity of Bianchi we obtain

that is,
(3 + hA A2)R(U1,U2)Z + (h0.1-0.)R(U2, Z)U + (ha2 -0.)R(Z, U1)U 0

(3 4- hA A h0.1 4- 0.)R(UI,U2)Z 4- h0. -0‘ ha 4- 0.21)R(Z, U1)U2 0

(3.2)

(3.3)

From (2.2), (3.3) gives h0.2 0‘22 ha + a 2(3 + hA .- ha, + a21).
(U,U3) or (U3,U,) respectively, we obtain

Changing (U,,U:) in (3.1) by

h0. -0.2i + haj- 0. 6 + 2hA 2A2,i # ,i,j 1,2,3 (3.4)
From (3.4) we get

h(0. aj) 0. a (3.5)
thus either a, 0% or 0‘, + % h.

Let us suppose that 0‘, # 0. =0,3. Then 0‘1+0. h. Thus a,, i=1,2,3, must satisfy the equation

a ha + 0‘,0‘ 0. Then we have (hA A2)U, 0.,0.2U,, i=1,2,3, and from (2.4)

SU, (4,, + 4 + 0.10.)U (3.6)
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From (3.4) we also have h(a, + a) a 22 6 + 2hA 2As, but h a + as. Thus alas 3 + hA A.
This means that for any Z orthogonal to gl, i=1,2,3, (hA- AS)z (aa 3)Z, and from (2.4),

SZ (4 + 4 + ,a2)Z (3.7)
From (3.6) and (3.7), M must be Einstein. But this is a contradiction (see [3]). Thus a, % ,
i# j. Then a is constant and from (3.4) we have

3 + h( -)- + 0 (3.8)

But from (2.5), Z is also principal and its principal curvature is p (An + 2)/(2A-a). Thus we also

get
3 + h(-)- +a 0 (3.9)

Then from (3.8) and (3.9) we obtain that either A= or A+= h. If A , A must satisfy the

equation A As 0. If A + h, A must satisfy the equation aA 2(a + 4)A + a3 + 5a 0. In

both cases all the principal curvatures are constant. Thus, [3], M must be an open subset of either

a geodesic hypersphere or of a tube of radius r, 0 < r < ,r/2 over Qpk, 0 < k < n- 1. It is easy now to

see that the only ones satisfying (3.8) are open subsets of geodesic hyperspheres of radius r,

’0 < r < ,r/2, such that cotr 1/(2n), (see [3]). This concludes the proof.

It is also easy to see that these real hypersurfaces cannot satisfy the condition R.R=0, and then

Corollary 3 is proved because R.R=0 implies R.S=0.

ACKNOWLEDGEMENT: Research partially supported by GIST Grant PS 87-0115-C03-02

REFERENCES

1. ISHIHARA, S. Quaternion Kahlerian Manifolds, J. Differential _Geometry, 9 (1974), 483-500.

2. KI, U.H., NAKAGAWA, H. and SUI-I, Y.J.: Real Hypersurfaces with Harmonic
Weal Tensor of a Complex Space Form, (Preprint).

3. MARTINEZ, A. and PEREZ, J.D.: Real Hypersurfaces in Quaternionic Projective
Space, Ann,. di Mt., 1_(1986), 355-384.

4. PEREZ, J.D. and SANTOS, F.G.: On Pseudo-Einstein Real Hypersurfaces of the
Quaternionic Projective Space, Kyu..gpook Math, 25(1985), 15-28.

5. RYAN, P.J.: Homogeneity and Some Curvature Conditions for Hypersurfaces,
T’ho.k.u Math. J., 21(1969), 363-388.


