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ABSTRACT. We classify certain real hypersurfaces ot a quaternionic projective space satisfying
the condition o(R(X,Y)SZ) = 0.
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1. INTRODUCTION.

Let M be a connected real hypersurface of a quaternionic projective space QP", n > 2, with metric g
of constant quaternionic sectional curvature 4. Let ¢ be the unit local normal vector field on M and
{#1,%2,¥3} a local basis of the quaternionic structure of QP", ( See [1]). Then U, = 4§, i=1,2,3 are
tangent to M. It is known, [3], that the unique Einstein real hypersurfaces of QP" are the open
subsets of geodesic hyperspheres of QP" of radius r such that cot?r = 1/(2n). This paper is devoted
to study real hypersurfaces M of QP" satisfying the following condition

R(X,Y)SZ+R(Y,Z)SX + R(Z,X)SY =0 (1.1)

for any X,Y,Z tangent to M, where R denotes the curvature tensor and S the Ricci tensor of M.
Concretely we prove the following:

THEOREM 1. Let M be a real hypersurface of QP", n > 2, satisfying Condition (1.1) and such
that U,, i=1,2,3, are principal. Then M is an open subset of a geodesic hypersphere of QP" of radius
r, 0 < r < 7/2, such that cot?r =1/(2n).

Clearly condition (1.1) is weaker than R.S=0. Thus we also obtain

COROLLARY 2. The unique real hypersurfaces of QP", n > 2, satisfying R.S=0 and such that
U,, i=1,2,3, are principal are open subsets of geodesic hyperspheres of radius r, 0 < r < x/2, such that
cot?r = 1/(2n).

COROLLARY 3. A real hypersurface of QP*, n>2, with U,, i=1,2,3, principal cannot satisfy
the condition R.R=0.

Where for any X,Y tangent to M, R(X,Y).T = VxVYT‘VYVxT‘V[x,y] for any tensor field T on
M, (see, for example, [5]).
2. PRELIMINARIES

Let X be a vector field tangent to M. We write $,X = ¢,X + f,(X)¢, i=1,2,3, where ¢;X denotes

the tangential component of ¢, X and f,(X) = ¢(X,U,). From this, [4], we have
92,X,Y)+9(X,8Y)=0, 6U,=0, oU,=-pU,=U, (2.1)
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for any X and Y tangent to M, i=1,2,3 and (j.k.t) being a cyclic permutation of (1,2,3).
From the expression of the curvature tensor of QP", [4], the equations of Gauss and Codazzi

are given respectively by

3
R(X,Y)Z = g(Y,2)X - g(X,Z)Y + )_ {9(9,Y,2)8,X - 9(9,X,Z)8,Y +
1=1

. +29(X,8,Y)8,2} + g(AY,Z)AX — g(AX, Z)AY (2.2)
an

3
(VxA)Y = (Vy A)X = Y {£,(X)8,Y - £,(Y)8,X +29(X,8,Y)U,} (2.3)
1i=1

for any X,Y,Z tangent to M, where A denotes the Weingarten endomorphism of M. The Ricci
tensor of M has the following expression s
SX= (4n+T)X =3 {f(X)U, +hAX — A%X (2-4)
1=1

for any X tangent to M, h being the trace of A.
If v,,1=1,2,3, are principal and have the same principal curvature a, this is constant, [4], and from
(2.3) it is easy to see that

240,AX = o(Ag, +8,4)X + 28, X +2f((X)U, - 2f (X)U, (2.5)

for any X tangent to M, where (i,j,k) is a cyclic permutation of (1,2,3).
3. PROOF OF THEOREM 1.

Let Z be a tangent field to M, orthogonal to U,, i=1,2,3, and principal with principal curvature
A. Then, from Condition (1.1) and (2.4) we have

(4n+7+hA=A)R(U,,U;)Z + (4n + 4 + hay — a)R(U,, Z)U, + (4n + 4 + hay — ad)R(Z,U U, = 0 (3.1)

where a, is the principal curvature of U,, i=1,2,3.
From (3.1) and the identity of Bianchi we obtain

(34 hA=I)R(U,U)Z + (hay - a:f)R(Ur Z)U, + (hay - a%)R(Z,Ul)U2 =0 (3.2)
that is,
(34 hA =22 —hay +ad)R(U,,U,)Z + ha, — ad — hay + ad)R(Z,U;)U, = 0 (3.3)

From (2.2), (3.3) gives ha,~— a% —hay + a% =2(3+hA=22—ha, +af). Changing (U,,U,) in (3.1) by
(U3, U3) or (Us,U,), respectively, we obtain

hai—a?+haj—a?=6+2hA—2A2,i;é,i.j=1,2,3 (3.4)
From (3.4) we get
—n2_ .2
h(ai-aj)_al-aj (35)
thus either ¢, =a, or ¢, +a, =h.
Let us suppose that a; #a,=a;. Then a;+a,=h. Thus e, i=1,2,3, must satisfy the equation
o® — ha +a;a, = 0. Then we have (h4 — A%)U, = a;a,U,, i=1,2,3, and from (2.4)

SU, = (4n+4+a;a,)U, (3.6)
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From (3.4) we also have h(a; +a;)— a3 —af = 6+2hA—2)2 but h=a; +a;. Thus aja;=3+hA-)%
This means that for any Z orthogonal to U,, i=1,2,3, (hA — A%)Z = (a;a, - 3)Z, and from (2.4),

SZ=(dn+4+aay)Z 3.7
From (3.6) and (3.7), M must be Einstein. But this is a contradiction (see [3]). Thus a,=0a,=a,
i#j. Then a is constant and from (3.4) we have

3+h(A-—a)—-At+a’=0 (3.8)

But from (2.5), #;Z is also principal and its principal curvature is 4 = (Aa +2)/(2A —a). Thus we also
get

34+h(p—a)—p?+a’=0 (3.9)
Then from (3.8) and (3.9) we obtain that either A=p or A+pu=h. If A=y, A must satisfy the
equation M —Xa—~1=0. If A+p=h, A must satisfy the equation ar?-2(c?+4)A+ a3 45a=0. In
both cases all the principal curvatures are constant. Thus, 3], M must be an open subset of either
a geodesic hypersphere or of a tube of radius r, 0 <r < 7/2 over QP*, 0 <k <n—1. It is easy now to
see that the only ones satisfying (3.8) are open subsets of geodesic hyperspheres of radius r,
‘0 < r < /2, such that cot?r = 1/(2n), (see [3]). This concludes the proof.
It is also easy to see that these real hypersurfaces cannot satisfy the condition R.R=0, and then
Corollary 3 is proved because R.R=0 implies R.5=0.
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