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ABSTRACT. For pos it ve operators on a Banach latt ice, abso Iute cont nu ity

cond t ions are cons dered. An operator abso Iute y cont nuous with respect to

T is compared to sums of compositions of T together with orthomorphisms or in

special cases projections. Consequences For compact operators on functions

spaces C(X) are considered.
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I. INTRODUCTION

For positive operators S and T between real Banach lattices several types

of "absolute continuity" have been defined. Here, we consider an absolute

continuity which will be applicable to spaces which are not necessarily

Dedekind complete. Several approximations of an operator absolutely

continuous with respect to T are provided in terms of sums of operators of

the form Qi0ToHi where Qi and H are orthomorphisms. These approximations

are compared to results known for operators S less than T and For operators

on Dedekind complete Banach lattices. We also examine the relationship

between this and previous notions of absolute continuity. We begin by

recalling the following definitions.

DEFINITION. (Luxemburg [!]). Let E, F be Riesz spaces with S, T

positive operators From E to F. We say that S is absolutely continuous with

respect to T if for each positive element F in E, we have that SF is in the

band generated by TF.
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DEFINITION. (Feldman [2]). Let E, F be Banach lattices with S, T

positive operators From E to F. We say that S is -absolutely continuous

with respect to T if for each positive element f in E, we have that SF is in

the closure of the order ideal generated by TF.

We note that for linear Functionals on E C(X) (the continuous

real-valued functions on a compact topological space X) when E is Dedekind

complete, these two notions are equivalent to the usual definition of absolute

continuity. The absolute continuity Introduced here will be shown to be

equivalent to the usual notion for functionals on any C(X).

In what Follows we will refer to a decreasing sequence {fk} of positive

elements of a Banach lattice E as a positive decreasinq sequence in E. We

now introduce our version of absolute continuity.

DEFINITION. Let E, F be Banach Lattices and let S, T be positive

operators from E to F. We say that S is sequentia11y absolutely continuious

(s-absolutely continuous) with respect to T if For each positive decreasing

sequence {Fk} in E and each positive linear functional on F, we have that

lim(@(TFn))=O implies lim((Sfn))=O.
We will be concerned with Banach lattices with quasi-interior points. An

element e of a Banach lattice E is a quasi-interior point if the order ideal

generated by e is dense in E. Recall that the order ideal generated by e is

the set of all elements whose absolute value is bounded by some multiple of

e. If E is equal to the order ideal generated by an element e then e is an

order unit. Recall that if E is a Banach lattice with quasi-interior point,

the elements of E can be represented as extended real valued functions on a

contract set X each Finite on a dense subset (see [3]). We shall call X a

representation space For E. Further, this representation contains C(X) as a

dense order ideal. IF E has an order unit, the representation is equal to

C(X). We denote bY Tthe subset of the linear operators from E to F which

consists of a11 those positive operators S, For which S is s-absolutely

continous with respect to T. Further, we denote the order ideal generated by

a positive operator T by <T> and the set of positive operators which are less

than some multiple of T by <T>+. In what follows, we identify elements in a

Banach lattice with a quasi-interior point with their representation as

extended real valued functions. IF S and T are positive operators from a

Banach lattice E with a quasi-interior point e to a Banach lattice F, the

range of S and T is contained in the closure of the lattice generated by the

supremum of Se and Te. X will denote the representation space for E and Y the

representation space for the Banach lattice generated by the supremum of Se

and Te.

2. ABSOLUTE CONTINUITY.

We begin with 2 elementary lemmas.

LEMMA I. Let S and T be linear Functionals on C(X), the set of

continuous real valued Functions on a compact HausdorFF space X. Then S is

s-absolutely continous with respect to T if and only if the measure associated

with S is absolutely continous with respect to the measure associated with T.

PROOF. We note that a linear Functional @ on R corresponds to

multiplication, thus @(TFn) converges to 0 if and only if TFn converges to O.
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It is an easy exercise to see that S is s-absolutely continous to T then

the measure associated with S is absolutely continous with respect to the

measure associated with T.

The converse is a simple application of the Radon-Nikodym Theorem.

LEMHA 2. Let E be a Banach lattice with quasi-interior point e and let

$ be a positive linear functional on E. Given a representation space X for

E, there exists a measure u such that For each g in E,

(g) /gdu@.

PROOF. Since C(X) is dense in E and the sequence [gAne} converges in

norm to g For g non-negative, the sequence [@(gAne)} converges to Q(g). It

can be verified that the measure corresponding to the restriction of to

C() represents $.

We now give a sufficient condition for s-absolute continuity.

PROPOSITION I. Let E be a Banach lattice with quasi-interior point e

and F a Banach lattice with S, T positive operators from E to F. If for each

positive decreasing sequence of functions {fn in E and for each y in the

representation space Y, the convergence of Tfn(y) to 0 implies the convergence

of Sfn(y) to 0 then S is s-absolutely continous with respect to T.

PROOF. Let $ be a llnear functional on F and {fn} be positive decreasing

sequence such that $(Tfn) converges to O. By lemma 2, we have a measure u

such that @(g) ygdu. In particular we have that [Tfndu converges to O. For

each y in Y, define h(y) by

h(y) inf {Tfn(y)}.

Thus /hdu /Tfndu for each n or Shdu O. Setting A {yl h(y) 0}, we

have u(Y\A) 0 and ySfndu SASfndU. Since h(y) 0 on A and {Tfn(y)} is

decreasing, we have that Tfn(y) converges to 0 on A and thus Sfn(y) converges

to 0 by hypothesis. Since Sfn(y) ! Sfl(y) and Sfn(y) converges to 0 on A,

the Monotone Convergence theorem ilies

im SySfndU lira /ASFndU 0

Thus we have that $(Sfn) converges to O, that is that S is s-absolutely

continous with respect to T.

We note that in the case when F C(Y), the converse of the proposition

is also true since y0T defines a positive linear functional on F.

It is obvious that if S < T then S is s-absolutely continous with

respect to T, i.e. contains <T> +. it is an easy exercise to show that 7
is closed and thus contains even the closure of <T>+.

PROPOSITION 2. ]vis a closed subset of L(E, F), the linear operators

from E to F with respect to the operator norm. In particular, contains the

closure of <T>+

We now compare and contrast these notions oF order and absolute

conti nuity when the range s an M-space.



86 W. FELDMAN, C. PISTON AND C.E. PISTON

THEOREM I. Let E be a Banach lattice with quasi-interior point and S, T

be positive operators from E to C(Y). Consider the conditions.

i) S is -absolutely continous wlth respect to T (in the sense of Luxemburg)

ii) S is -absolutely continous with respect to T
iii) S is s-absolutely continous with respect to T

iv) S is in the closure of <T>+.
Then we have

iv => iii => ii =>

and no other implications hold.

PROOF. That (iv) implies (iii) is Proposition 2. To show that (iii)

implies (ii) we First note that if $ is s-absolutely continous with respect

to T and f Z O, SF(y) 0 implies Tf(y) > O. For a given > 0 and g such

that 0 < g SF, let A be the set [yl (g e)(y) Z 0}. Then A is compact

and hence there exists a > 0 such that TF Z (g e). Therefore we have

that Tf (SF e) and thus (5F Be)VO is in the order ideal generated by

TF and therefore SF is In the uniform closure of the ideal generated by Tf.

Thus we have (iii) implies (ii). That (Ii) implies (i) Follows from the Fact
that the closure of the ideal generated by TF is contained in the band

generated by Tf.

That no other implications hold is shown by the following examples. We

will assume that C(X) is endowed with the sup-norm topology.

EXAMPLE I. We give here operators S and T such that S is absolutely

continuous with respect to T, but $ is not -absolutely continuous with

respect to T.

Define S and T from C[O,I] to C[O,I] as Follows.

Sf(x) Fix)
TF(x) xF(x)

SF is in the band generated by TF and hence S is absolutely continous with

respect to T.
However, For each operator T’ such that T’F is in <TF>, we have For any

positive F in C(X), T’F(O) < TF(O) O, For some in R+, and thus

T’F(O) O. Therefore,

IlSF T’Fll Z ISF(O) T’F(O) iSF(O) I.

If f(O) 0 then SF is not in the closure of the order ideal generated by TF

and thus S is not -absolutely continuous with respect to T.

EXAMPLE 2. Here we give operators S and T such that S is -absolutely

continous with respect to T, but S is not s-absolutely continous with respect

to T.

Let N" denote the one point compactiFication of N. Define operators

from C(N’) to C(N’) as follows.
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Sf(x) Fix)

Tf(x) {I: [fin)l/In2)]1 (1 denotes Fix) 11
n=!

Since TF is constant, 5f is less than some multiple of TF, i.e. in the order

ideal generated by TF0 Thus S is -absolutely continous with respect to T.

NHowever by defining fk(x) on by

fk(x) X[k,(R)

we have a positive decreasing sequence of functions on C(N’) with TFk(x)
N"converging to 0 for each x in However, Sfk(=) for each k, and hence

does not converge to O. Thus 5 is not s-absolutely continous with respect to

T.
EXAMPLE 3. Here we give operators S and T such that S is s-absolutely

continous with respect to T, but where $ is not in the closure <T> +. We

define operators fr C(N*) to C(N*) as Follows,

Sf: f

TF {[E [F(n)]/nz] + F(=)}l.
n=l

Suppose that S is In the closure of <T>+. Let T’<T>+. For x in N’, we

have For some X and for every f >_ 0 in C(N’),

T’f(x) < XTF(x) X(I:If(n)n: l/n2 + f(=))

Pick m such that m2 > 2;, and define a function g by

We thus have g In C(N*) and lgll, I. In addition, For every x in N"

T’g(x) < x(i/m2) < I/2.

Thus,

IIS- T’II 2_ IlSg- T’gil

Z ISg(m) T’g(m) > l/2

and thus S can not be In the closure of the order ideal generated by T.

It is routine to check using Proposition that S Is s-absolutely

continous wlth respect to T.

3. APPROXIMATIONS.
The next several theorems glve approximations which enlarge the scope of

previous results. Recall that a positive operator T From a Banach lattice E

Into Itself Is an orthomorphlsm IF and only If there exists an element m in E

such that TF mf For each f in E where the elements are viewed in the

representation (see e.g. [4], Thm. 4).
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The next theorem is based on a result for operators S which are

-absolutely contlnous with respect to T on Dedekind complete M-spaces in [2]

using a slmi far argument.

THEOREM 2. Let E and F be att Ices w.iih QUBS i- niter ior PC)I nts
and S, T be posltlM operll;ors, from E to F such that S is s-absolutely

con..t.inous with respect t__o T. Then for every F i_On E, and every e > O, there
exist orthomorphlsms Hi on E and Qi on F, For a finite number o__f indlces i,

such that

n
II(S -i=?iTHi)fl < ,

where Iioli is the Banach s_pace norm on F.

PROOF. If e is a quasi-lnterior point of E then For a given f in E+, we

have that e + f is also a quasl-interior point. Thus we can choose the

representation space X so that IF F is In C(X) and SF and TF are in C(Y).

Now, assume that S is s-absolutely continous with respect to T. For each

fixed y in Y, let Uy and Vy be the measures corresponding to the functionals

(y0T) and (y0S), respectively. By the Riesz Representation Theorem,

Tf(y) (y0T)(f) [FdUy and

SF(y) (y0S)(f) [fdvy.
As noted in Lemma I, Vy << Uy and thus we have by the Radon-Nikodym Theorem a

positive measurable function gy on X such that

Sf (y) Sfgyduy.

Since (y0S) is continuous, we have that S(1)y < (R), and therefore gy is in

LI(X, Uy). Given 6 > 0 and f in C(X), there is an hy in C(X) such that

lgy hyll < Elllfll. (see [5], Thm 25.10).

Thus we have

I[T(hyf) Sf]yl I[(hy-gy)fduyl
< Ilhy gylllllfll. <

Since T, S, f, hy are all continuous, there exists a neighborhood Ny of y such

that for every z in Ny,

I[T(hyf) Sf]zi < 6

For each y in Y, choose such a neighborhood. Since Y is compact there is a

finite nun3er of these neighborhoods which cover Y. We label the

neighborhoods N for 1,2 n. Further, functions qi in C(Y) can be

chosen (a partition of unity, see e.g. [6], p. 63) such that
n

0 qi ’l’ilqi I, and qi(y) 0 on the complement of N i. Let h hy,
where N Ny.
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Assume that z is in Y such that qi(z) O. Then z is in Ni and

ISf(z) T(fhl)(Z)l <

and hence

qi(z) ISF(z) T(fh I)(z) < qi(z)"

Therefore, summing up over the index i, we have

n n
I: (qi(z) lSf(z) T (fhi)(z)l) < I: qi(z).i=l i=l

n
I: qi(z)T(Fh )(z)l < .thus, ISf(z)

i=l

Since z is arbitrary, this gives us

n

IlSf-i=lI: qtT(fhi)ll, < .
We define orthomorph sms QI on C (Y) and H on C(X) by

qi F(y) qI(Y)F(Y)
Hif(x) f(x)h i(x).

Thus we have by extending to E and F (e.g., see [2])

n
I(S- I: qioToH )fll. <

i=!

n
Hence, I(S :I: QiTH )fl < :

i-I

which implies for the Banach space norm,
n

II(S- I: Qi0ToH )fll < I1 111 Ilell "i-I

When the spaces involved are Dedekind complete, approximations of this

type have generally been given using proJection operators (e.g. [7], [8]).

CORROLARY I. Let E, F, S, T be as in the theorem. If E and F are

Dedekind complete, and if S is s-absolutely continous with respect to T then,

For each positive f in E and every O, there exist projection operators Qi’
Hi and real valued scalers ai For a Finite number of indices such that

n
II(S- .

i-I
aiq ioToH i)fll < .

PROOF. If C(X) is Oedekind complete then we have that X is extremally

disconnected. In this case each simple Function of the Form eiXEi is

continuous, if 0 is open. Thus, following the proof of the Theorem we choose

n
hy to be a simple Function of the formi=leii with Hi open. Further, we

choose qi to be characteristic Functions of clopen sets. Defining the

operators H and Qj as
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we observe that each qj and H are projections. The remainder of the proof

is similar to that of Theorem 2.

The next result, motivated by results which were established for

operators S which are in the ideal generated by T (on M-spaces by AIiprantis

and Burkinshaw [6] and on Banach lattices with quasi-interior points by Haid

[9]), is a direct corollary of Theorem 2.

COROLLARY 2. Let E and F be Banach lattices with quasi-interior points

and let S, T be positive operators from E to F such that S is s-absolutely

continous with respect to T. Then for every f in E, @ a positive linear
functional on F, and B > O, there exist orthomorphism H on E and Qi on F,

for a Finite number of indices such that

n
4(I(S -Z Qi0ToHi)fl) < .

i:l

A further characterization of s-absolute continuity is given by the

Following.

THEOREM 3. Let E and F be Banach lattices with quasi-interior points

and let S and T be positive operators from E to F. Then S is s-absolutely

continous with respect to T if and only if, given > O, f in E and a

positive linear functional on F, there exists an orthomorphism H on E such

that I$(TH -S)gl < for all g in E with Igl < f.

PROOF. Let S be s-absolutey contlnous with respect to T. If e is a

quasi-interior point of E then so is f + e. We choose a representation space

so that F is in C(X). For a linear Functional @ we have that @0S << $0T as

measures on X (see lemma I). Thus if For every h in C(X) we have

$0T(h) Shdu

then there is a positive measurable Function p" such that

$0S(h) Shp’du

Letting h(x) For every x, we see that p’ is Ll(u), and so there exists a,
function p in C(X) such that lip P’II < /llfll,. Therefore for g such

that gl < f, we have

I(0S)g- (@0Tp)gl IIgp’du- hgdul Ig(p- p’)dul

lip- p’lllllgll, < .
Let H be the orthomorphism defined by multiplication by p. Thus for every g

in E with Igl < f, we have that

I@(TH S)gl < .
Conversely, let {Fn} be a positive decreasing sequence in E such that @(TFn)
converges to O. Again choosing X so that F! is in C(X), we have {Fn} in
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C(X). By assumption, given 6 O, there exists an orthomorphism H on E so

that I@(TH S)fnl < 6 For every n. Recall that H is a multiplication

operator, say multiplication by p in C(X). Now (@0T) is a positive linear

functional on C(X) corresponding to a measure, say u. Since (TFn) fndu
converges to O, it Follows that SfnPdU (THFn) converges to O. Thus (SFn)
also converges to 0 and so S is s-absolutely continous with respect to T.

For co.act operators on M-spaces, we have the following which is based

on a result for Dedekind complete spaces in [2].

THEOREM 4. Let X, Y be compact Hausdorff spaces and S, T be positive
operators from C(X) to C(Y). IF S is s-absolutely continous with respect to

T and T is compact, then S is compact if and only if S is the norm limit of

n
operators of the type Z Qi0ToH For a finite number of indices and each Qi

i=1 i,

and H is an orthomorphism,

PROOF. IF T is compact then each operator of the Form Qi0ToHi is

n
compact and hence so is the finite sum Qi0ToHi and thus S is compact.

i=l
For the converse, we assume that S is compact. For every y in Y and

6 O, denote by G the operator defined by

GF SF T(hyf),

where hy is the continuous function as described in the proof of Theorem 2.

Letting HM be the orthomorphism on C(X) defined by multiplication by by, we

have that G is compact, since both S and THy are compact. Further, as in the

proof of Theorem 2, we have

16f(y) < 6.

We will show that there is a neighborhood Ny of y such that GF(Ny) is

contained in (-3&,36) for all F in C(X) such that Ilfil, 1.

Assume that this is not the case. Then there exists a net lye} in Y

such that Ye converges to y, and there exist functions fe in C(X) with ilFall
and satisfying both of the following

i) Gfa(Ya > 3&, For all a.

11) GFa(y) < 6.

Since G is compact, there exists a subnet of {GFo} converging to some

Function g" in C(Y). However, From condition ii) we have

g’(z) < 36/2

for all z in some neighborhood W of y, while from condition (i) we see that

g’ (ya) > 36

For all Ya in W, giving us a contradiction.

Therefore, there exists a neighborhood Ny of y such that GF(Ny) is

contained in (-3&, 36), for all f with lfll(R) <_ I. Repeating the construction
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process of Theorem 2, we Find a partition of unity [qi} For a cover {Ni} of Y

such that

0iqi <_I,
n
}:" qi I, and qi (y) 0 on the complement of Ni.i=l

Thus we have
n n

IIS I: QiTH II sup {IISF . (QiTH)fll < 3
i=l i=l

n; QIOTOHand thus S is the norm limit of operators of the type
i=l i"

We Further note that the approximation given in Theorem 2 is not, in

general, uniform. Let E F C(N’) and define SF(x) f(x) and TF(x)

(n(n)/n2=i + f((R)))l. As stated earlier S is s-absolutely continous with

respect to T. T is compact (it has rank I), but S is not compact. IF the

approximation given in Theorem 2 were uniform, then Theorem 4 would imply S is

compact.
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