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ABSTRACT. In this paper we consider dual integral equations involving inverse

Weber-Orr transforms of the type W-1 [;] 0,1 A general solution is
V--,V

established using elementary methods. Many known results are derived as special cases.
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1. INTRODUCTION.

1. Dual integral equations involving inverse Weber-Oft transforms W-1 [;] arise in the

discussion of boundary vue problems in elasticity and torsion. A few special cases have

considered, notabally, dual integral equations involving W:I,[;] W-1been and 0,1[;]’ by

various authors, [1,2]. But there does not seem to have been given a full account of dual

integral equations of general type in the literature. In this paper we shall consider

equations involving associated Weber-Orr transforms of the type

-I -2Wv._,v[ (); p] f,(p), a _< p _< c

(I.i)
-1 -=#Wv_,v[" b (); p -f,(p), c < p < (R)

where 0,1,2,..., u > -1 and an unknown function. Since associated Weber-Oft
transforms are of general order (-,v), therefore most of the known results may be
derived as special cases of our results. We may also point out, that special cases of (1.2)
can arise when solving Beltrami-Michel equations in case of torsion, [2].



164 C. NASIM

To solve the system (1.1), first we decompose it into two sets of dual integral

equations when fl 0 and f2 0 respectively. The solution of the system can then be

obtained by adding the solutions of the two sets. The method we use to find the

solutions is similar to the one used in [3]. An important aspect of this method is to

establish a suitable form of the unknown function in terms of an undetermined function,
say g. The problem is then reduced to finding g. In order that satisfies both the

integral equations of the set, we find that g satisfies a single integral equation of Fredholm

type of the second kind. The value of g can then be estimated, thus establishing the

solution of the set.

For convenience, we shall state below some results and definitions for future

reference. All those results are either known or can easily be derived by using well-known

properties of the Bessel functions.

DEFINITION 1. We define,

W#,v[f(p); fa(R)#,v( ; p,a) p f(p)dp

where

W# v[(); p f ()d
Jr(a) + Y({a)

/z,v( ; p,a) J#(p) Yv(a) Y#(p) Jv(a)’

J#and Y# being the usual Bessel functions. We shall call W#,v[;] and W-1
#,v

[;] the

associated Weber-Orr transform and inverse transform of order (#,v), respectively.

DEFINITION 2, [4]. The Erdyli-Kober operators

and

where

Also,

j/,a[g(x)] 2 x27 f(R)(u2_x,)a-1 ul-2a-2Tg(u)du,
x

’7,a[g(x)] (-1)n x2rt-1 Dxn(x2n-2r/+l _n,a+n[g(x)]

_1 dlDx and 0 <_ a+n < 1.

a +a,-a

if a> 0,

if a< 0,

< / < "v + , / 0,1,2,... and x+1/2 f(x)is summable in theLEMMA 1. If 0

infinite interval (a,(R)), then

],  Cp) w J (0; p ].

This result has been proved by the author elsewhere.
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LEMMA 2, [1]. For a < 0, we define,

f /,v(;P’a)#, v(;t’a) l+a d
J() + Y()

f(R)J7(p)J#(t)l+a d

2. cos (2-r/-#+a+l) f Xv(ay

being Bessel function of the third kind.

K;7(py)K#(ty)yl +a dy,

LEMMA 3, [5]. For v > # > -1,

0

f (R)J#(au)Jv(bu)u#-V+ du 2#-v+ la#(b2_a2)-#-i
r(v_)bV

0<b<a

a<b<(R).

LEMMA 4, [5]. For fl > 0,

f (R)(u2-y2)-lul--n K;7(u)du
Y

2A-IF(/)y/-;7(-flK;7_(y).

3LEMMA 5. For 0 < / < ;7+ [,

(R)

f(u_y:)/%" ul-;7
Y ;7,u ;u,a)du 2fl-lP(B)y/-;7-B ;7_/%u( ;y,a).

3LEMMA 6. For 0 <

f (u-y)- u1-;7 W’ (u,t)dt 2-lF(f/)y-;7 JYu,rt-f,#,a- (y,t).
y

We consider the dual integral equations

W_,,,[ %(O;Pl 0 a<_p_<c

w,[C2(0; p l= -%(p), c < p < =.

CASE (a). Let -1 < a-fl < 0.

The equation (2.1) is satisfied if we take

W-1 [-2aC().p] HCP-c) G(p),

where H is the tIeaviside function and 13, is yet unspecified. Then due to

lemma 1, for 0 < < u + g,

-2a ,, () Wv_a,v[H(p-c)G(p); .fc(R),e_a,v( ’; p,a)pG(p)dp ...(2.3)

(2.1)

(2.2)
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Now using the representation for 6 v--,u
3-1 < a- < 0 and fl-a < u-n+,2

from lemma 5, and rearranging, we obtain for

() V(-fV-2a-f+l /+a fc(R)Pl +v--s G(p)dpf (R)(t
p

p)/-a-1 t-u+a-/+l

v-k+#-a,u( ; t,a)dt

If we let

then

2 a’-+ 1 +a
(R)

fc t;-v+ a--/+

+v-np G(p)dp.

t

u_a+/_a,u ;t,a)dt fc (t

2 a,-fl+ 1 tn-u+ a-fl+ 1g(t) fc (t’ _p2)-a,-1 pl+U-n G(p)dp,

() +a fc v--t,+-a,u ;t,a) g(t)dt (2.4)

which gives us a suitable expression for in terms of as yet to be determined function g.

Now for p > c, from (2.2),

_f:(p) W-1 [-2/ (.); P

f l-2f()d.
J

Substituting the value of from (2.4), and changing the order of integration, we have,

-f(P) fc g(t) dv,v,_tc, u._s+/5_.a,a._/ (p,t)dt.

Using the results of lemmas 2 and 3, for c < p < < (R) we may write

ts-v+a--f(t:-p)/5-’-1 H(t-p) + ((p,t),

where

2 (R) u(aY)
(p,t) = sin (a+a-) fO Ku(aY) KP-a(pY)K-+/-a(ty)yl+a’-fdY’

and s+ 1 > f- a.

Hence (2.5) gives

2 l+a’-/ pV- f(R) t-u+a-/(t_p)/--a-1 g(t)dt + fc g(t)((p,t)dt.-f:(p)
p

Now multiply both sides by 2-a pl+a-fl and make use of the Erdyli-Kober operator

Jgr/,a’ then the last equation, on rearranging, gives,
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1/2(--+a-fl-I-1),- [g(P)] -2- pl+-fl S g(t) (p,t)dt 2- pl+-fl f:(p)
c

-G(p) F(p), say. (2.7)

Hence for-1 < a-/ < 0,

-!
g(P) -(e-+-fl+l),--a [G(p) + F(p)]

-(u-+-+l),a [G(p) + F(p)I

I Pe’-m+-c d[pm-V+ ce-+ 1 1/2(e._m+_+l),l+,_G(p)+F(p)]]
-’+-- d fp (u,_p,)- u-V+-a [G(u)+F(u)]du.(1+-) a-

Substituting the values of F and G in the above equation, we obtain,

2-a -+-a d [fp(R)(u2_p2)- ul+- f2(u)du]
I + say.

On substituting for in It, we have

2-a+l d g(t)dt f (u:-p:)a’- ul+-v du.sin x (+a-) ]
P

.S Ku(ay) K_(uy)Ke_..l_..a(ty)yl+- dy.

dNow, first evaluate the u-integral, using the result of lemma 4, then apply the operator

to obtain

It -2P sin x (n+c-)r f(R)g(t)dt
e fo

(R) I Jay)
Ke(ay) K--I-- (py)K--I--(ty)y dy.

Hence, from (2.8), for-1 < a- < O,
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This is a linear integral equation of Fredholm type of the second kind, from where g can

be evaluated, thus giving us a solution of the dual integral equations (2.1), (2.2). The

conditions of validity of the Fredholm equation (2.9) is obviously that the integral defining

the kernel

v(ay)f K (py)K (ty)ydy
0 v-K+/5-a v-K+/-a

converges. The convergence is guaranteed when /-a < k+l and 2a < p+t, since 0<a<p

and a<c<t. Next we shall show that this solution is also valid when 0 < c=-/ < 1, but

the derivation will be slightly different.

CASE (b). Let 0 < a-/ < I.

The equation (2.1) is satisfied if we take

-1 -2w_,[ %();

where G(c) 0 and ’ G(p) 0 as p (R).

H(p-c)G(p),

3Then for 0 < < v+ [

C2(0 w-, [U(c)G(a); ]

fc P--s’v ; p,a) p G(p)dp (2.10)

1

"c "’f(R)rd (pV-tG(p))pS-U+l v_;_l,u( ; p,a)dp,

by integrating by parts.

and changing the order of integration, we obtain for 0 < a-/ < 1 and

where

Now using the representation for w_s_l,v( ; p,a) from lemma 5

) a+/9 fc(R)_+/_a,u ; t,a)g(t)dt

2 a-/ s---/+a+ 1 fct d 2_p2)/--adp"g(t) (pV-SG(p))(t

(2.11)

Notice that the representation for () in (2.11) is identical to the one given in (2.4).
If we take p > c, then (2.2) gives

-1 -2-f() w_,.[ ();

f(R) v_,v(;p,a) I-2/ ()d
J (a) + Yv(a)

or,
(;,a) ]d [--,.I- 1pS-V+l f2(P) a- fc J (a)+ Y(a)
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Now if we replace by its vmue given by the equation (2.11), and rearrange, then

d [p-V+l%p-V+l f2(P): - "/c v’u--l’e-+fl-c’a--l(P’t)g(t)dt]"
Making use of lemmas 2 and 3, and simplifying, we obtain for u-s > 0,

where
= (ay)

(p,t) f Kv(ay) Kv--I(Y)K-+-a(tY) YCefldY"

(2.12)

Now using Erdyli-Kober operator (/,a the first term on the right-hand side of

(2.12), gives

2ce--I d [p-U+-a+l l[g(p)]1/2(s+a,-/-l),fl-a+

_2oe-fl V1/2(_s+_fl+l),_a [g(P)]"

Hence from (2.12), we obtain

(1/2(v-s+c-+1),fl-a[g(p)]

Therefore for 0 < a-fl < 1,

-!
g(P) 1/2(-s+--l),-a [F(p)+G(p)].

1/2(p_s+_a._i.1),a._F(p)+G(P)]
2 pU--s+fl--a+ 1 /; a--Iu2 p’) uS-V+-a[F(u)+G(u)]du

_2fl-a+l -s+fl--a+l /=(U2_p2)a’--i U-U+1 f2(u)du
P

2-c+2 p-S+--a+l
(R) a---l_(uC-v+ 1

+ xr(a-) sint+a,-) f u P)
P

/c=g(t))(u,t)dt)du
+ I2, say.
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dIn first we substitute for (u,t) and apply the operator then evaluate the

u-integral using the result of lemma 4, hence, finally, gives for 0 < a- < 1,

2-a+l --+-a+l (R) a-/-I u-V+lg(p) p fp (u-p) f=(u)du

2 sinr(+a-/)p fc g(t)dt
(R) (ay)f K(ay) K-+/-a (pY)K-+--a(ty)ydy’

1/2 1 (iii) --a < L+I.where (i) 0 < < /+ (ii) -a < /--

This is a linear integral equation of Fredholm type of the second kind and is identical to

the one for the case -1 < a-fl < 0, given in (2.9).
Hence the solution for the dual integral equation (2.1) and (2.2) is given by

() a+ fc(R)-+-a’’ ; t,a)g(t)dt

where g satisfies the Fredholm equation (2.9) or (2.13) for -1 < a- < 1,
a- 0.

3. Next we consider the dual integral equations

W-1_,[C2(0;,] f,(,),

_
p

_
c (3.1)

W_,[ur (); p] 0, c < p < (R) (3.2)

Again we shall consider two cases when -1 < a-fl < 0 and 0 < a-fl < 1 separately
and arrive at a common solution of the system, although the derivation will be slightly
different for the two cases.

CASE (a). Let-1 < a- < 0.

Equation (3.1) is satisfied if we take

W-1 -2a (); p fl(p)H(c_p + G(p)H(p-c)

where H is the Heaviside function and G, and unspecified function.

0<< +[,

-2a () W_,[fl(p)H(c-p) + G(p)H(p-c);

Then for

C (R)

fa -’//( {; p,a) p f,(p)dp + fc -’( ; p,a)pG(p)dp (3.3)

the second integral in the right-hand side of (3.3) is identical to the one given in (2.3),
where it was evaluated to eventually give

/-a fc -+-a’/( ; t,a)g(t)dt,
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where g is yet to be determined. Thus we have

() {2a faCu_.s,u( ; t,a) tfi(t)dt + a+ t,a)g(t)dt

Now let p > c, so that from (3.2),

-1 -20 w_,[ (0;p]

f "-,u ;p,a) 1-2/ ()d
(a) + v(a)

In substituting the value of from (3.4) nd changing the order of integration we obtain

C

where Jg (p.t) is defined in lemma 2.

Note that the second term on the right-hand side is identical to the term on the

right-hand side of (2.5). Therefore using a similar analysis, we arrive at the following

equation,

,Y1/2(e_s.l_a_/.l.1),/_a[g(p)] -2-a pa-’l-lfc (p,t)g(t)dt

ovgv,_,p_s,2a__2/ (p,t)f1(t)dt

-G(p) F(p), say,

where (p,t) is defined by (2.6). And eventually, as before in (2.8),

g() r(-- p-+--a
+/)

d fc g(t)dt f (u’-p’)a-/ ul+s-u (u,t)du

2O-a+ d fp(R) p)a- l+s-u c
(u u du fat

u,,_,._,2c_2/(u,t)f,(t)dt.

Now we first carry out the u-integration in both the terms, using the results of lemmas 4
d

and 6; then apply the operator to finally obtain

(R) I u(ay) Ku_+_a(py)Ku_s+__a(ty)y dy
g(p) 2_ sinx(s+a--/) p g(t)dt f

c
P fa t gu,u-+-a,-s,a-- (P’t)fl(t)dt (3.5)

This is a linear integral equation of Fredholm type of the second kind, from where g can
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be evaluated, thus giving us the solution b, defined by (3.4), of the dual integral equations
(3.1) and (3.2), for-1 < a-f/ < 0, 0 < < 1/2v+ , /- < v-+and
-c < K+I.
CASE (b). Let 0 < a-f < 1.

The equation (3.1) is satisfied if we take, as before,

Wu_a,v[ lb(); p]= fl(p)H(c-p) + G(p)H(p-c),

where

Then
G(c) 0 and ’ G(p)-- 0 as p-- (R)

c
C2=#(0 fa _a,( ; p,a)pft(p)dp + .fc(R) p_a,( ; p,a)pO(p)dp.

The second term on the right-hand side is identical to the one on the right-hand side of
(2.10) and by a similar analysis, we eventually obtain,

2o c u( ; p,a)pf(p)dp + e+.fc(R)_+f_z,v( ; t,a)g(t)dt (3.6)(0= fa -’
This gives us representation for , where g is yet an undetermined function. Note that
representation for tb is identical to the one for the case -1 < a-/ < 0 given in (3.4).
Now for c < p < (R), from (3.2),

f on replacing by the expression given in (3.6), and simplifying, we obtain

0 p-V+l /(R) v-k,g(;p’a) {2a-2/+1 d j:cu-,v( ; t,a)tf(t)dt
() + Y()Jv

df -v+l ’(R)+ Jc I#’u,v_a_l,u._a+/_a,
__

1(p,t)g(t)dt]

2 (z--/ d p,)/--a ta-u+z-/g(t)dt_2-fpS-UF(e)+/- + i(/_a+l) fp(R)(t-
2 sin(s+ ot-) d f s-v+1 (R)

)dt]/ LP fc g(t))(p,t say (3.7)

by using the results of lemmas 2 and 3, where,
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f(R) I v(aY)
(p,t) Kv(aY) K-s-I(PY) K-s+-a(ty)yC-dY"

Using the Erdyli-Kober operator J/,c’ (3.7) can be written as

2ot-fl--I d[-u+fl-a+l 2 sins+c-/3).-[v Jg1/2(p_s+a,_fl_l),fl_a+l[g(p)] F(p) -
Or,

1/2(_s+w_fl+l),fl._a[g(P)] Fl(p) +

F(p)+ G(p),
Therefore, for 0 < a-/3 < 1,

say.

-1
g(p) ,7#’1/2(v_s.l.a,_jt..1),,._a IF(p) + G(p)]

’’1/2(v-s+fl-a-I-1),ce-fl IF(p) -I- G(p)]

11 + I2, say,

where FI is defined in equation (3.7). In II, substitute for F(u) and evaluate the

u-integral, using the result of lemma 5, we obtain

I -2p :v...s/..-a, v.(;p,a) fa,-+l dffaC-s,u ; t,a) fl(t)dt,

And I2 is similar to I of (2.13) from whence

(R) (R) I (ay)
I =-2 c g(t)dt f K(ay)sin s+ ct-fl) p K_s/fl_a(py)K_s+fl_a(ty)y dy

Hence for 0 < a-fl < I, g satisfies (3.9), a single integral equation of Fredholm type of

second kind.
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Note that this equation is identical to the one given in (3.5) for the case -1 < a- < 0.

Hence we have a solution for the system (3.1), (3.2) given by

() fa -n’Y( ; p,a) pfl(p)dp + {a+ (R)_n+_a,y( ; t,a)g(t)dt

where g satisfies the integral equation (3.5) or (3.9) for -1 < a- < 1, a- # 0.

Finally combining the solutions (2.15) and (3.9), we obtain a solution for the system (1.1),
(1.2).

The analysis throughout this paper is formal and we have not attempted to justify

the change of order of integrations. Nevertheless the analysis can be made rigorous by

imposing appropriate conditions on the functions involved and abiding by the various

restrictions on the parameters, stated at the conclusion of each case considered above.

Next we shall derive some special important cases of the solution of one general
system (1.1), (1.2).

4. SPECIAL CASES

(a) If we take k 0, the solution corresponds to the one given in [1]. We must point

out that the results given in [1] for the case 0 < a < are only valid for v>0 as

mentioned there.

1(b) Let v 1, a and fl 0. Then the system, from (2.1), (2.2),

W-10,1[-1();p] 0 a <_ p <_ c

W-10,1[(0;p] -f,(p) c < p < (R)

has a solution given by, from (2.11),

(0 fc [cs(t)Y’(a)-sin(t)J’(a)]t-1/2 g(t)dt

where g satisfies the equation,

(R) I l(ay) e-y(p+t 1/2 "(R)

f(u)du.

) Let v s 1, a 1/2 and 0. Then the system, from (3.1), (3.2)

W1,1[-’(O;p] f,(P), a _( p _< c

W-10,1[);p] O, c < p < (R)

has a solution given by, from (3.6),

() fa
c

=0,1( ;p,a) pf,(p)dp + [)S(R)[cos(t)Y,(a)-sin(t)J,(a)]t-1/2g(t)dt
where g satisfies the equation,
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g(P) P1/2 fc t-1/2g(t)dt f Kt(aY)!l(ay) e-y(p+t)dy

m c

f cos(p)Y,(a) sin(ep)J,(a) d fat ft(t) S
J(a) + Y(a) 0,1( ; t,a)dt.

(d) Let u a 0, a 0 and -.
equations

Then, from (2.1), (2.2), the system of

W-1o,o[(();P] o, a <_ p <_ c

c<p<(R)

has a solution, from (2.11),

() } fc [cs(t)Y(a)-sin(t)J(a)]t-1/2g(t)dt

where g satisfies the equation, from (2.14),

g(p) P1/2fc(R)t-1/2g(t)dt f I(aY) e-Y(P+t)dy

1/2 ; u f2(u)du

(e) Finally, a purely formal case, when u and a-f then

W-1[-:’ ()] fl(P),0,

W-1o,1/2[C ()1 -f(p),

a(_p_(c

c<p<(R)

has a solution given by

(Q Jc "-1/2’1/2( ; t,a)[g,(t) + g(t)]dt

where

+ 2afac $0,1/2( ; t,a) f(t)dt

uZ-t

with

g(t) -ratf(R)_ 1/2,1/2(;t,a)5/2d fa
c
u f(u)S0,1/2( ; u,a)du

_1/2,1/2( ; t,a) at)-1/2cos(t-a)

$0,1/2( (; t,a) -[--a] 1/2[cs((a)Jo((t) + sin(a)Vo(t)]"
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