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{Yn, n>1}, a general weak law of l{nge numbers of the form
{vn, n>1} and {by, n>1} are suitable constants. The hypotheses 'lm\}olve both the behavior of the tail of the
distribution of [Y;| and the growt,ll behaviors of the constants {ap, n>1} and {by, n>1}. Moreover, a weak
law is proved for weighted sums 2 aJY indexed by random variables {T,, n>1}. An example is presented

wherein the weak law holds but tl’le strong law fails thereby generalizing a classical example.

ABSTRACT. For weighted sums E nY. of independent an ldenhca]ly distributed random variables
Z aY ~-vp / bp P0 is established where
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1. INTRODUCTION.

Let {Y, Yp, n>1} be independent and identically distributed (i.i.d.) random variables defined on a
probability space (Q,%,P), and let {ap, n>1}, {vp, n>1}, and {by, n>1} be constants with ap#0, by >0,
n>1. Then {apYp, n>1} is said to obey the general weak law of large numbers (WLLN) with centering

constants {vp, n>1} and norming constants {bp, n>1} if the normed and centered weighted sum

n
(JE anj - vn) / by, has the weak limiting behavior
<

n

Y aY. - vy
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where E denotes convergence in probability. Herein, the main result, Theorem 1, furnishes conditions on
{an, n>1}, {by, n>1}, and the distribution of Y which ensure that {a;Yp, n>1} obeys the WLLN (1.1) for
suitable {vp, n>1}. It is not assumed that Y is integrable. Of course, the well-known degenerate
convergence criterion (see, e.g., Loéve [1, p. 329]) solves, in theory, the WLLN problem. The advantage of
employing Theorem 1 lies in the fact that, in practice, its conditions (2.1), (2.2), and (2.3) are simpler and

more easily verifiable than the hypotheses of the degenerate convergence criterion. Jamison et al. [2] had

investigated the WLLN problem in the special case where ay>0, by = E a5 n>1, and g&é a. = o(by).
=1 sis
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Conditions for {apYp, n>1} to obey the general strong law of large numbers (SLLN)

n
E a.Y. - Yn
=11

n

had been obtained by Adler and Rosalsky [3,4]. In Section 5, an example illustrating Theorem 1 is presented
and the corresponding SLLN is shown to fail.

— 0 almost certainly (a.c.)

The WLLN problem is studied in Theorem 2 in the more general context of random indices. More
specifically, let {Tp, n>1} be positive integer-valued random variables and let 1<ap — oo be constants such
that P{Ty/ap>A} = o(1) for some A>0. Theorem 2 provides conditions for

73 &Y - “leal p
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where the symbol [x] denotes the greatest integer in x.
As will become apparent, Theorem 2 of Klass and Teicher [5] and Theorem 5.2.6 of Chow and
Teicher [6, p. 131] provided, respectively, the motivation for Theorems 1 and 2 herein. Moreover, our

Theorems 1 and 2 are proved using an approach similar to that of the earlier counterparts.

Some remarks about notation are in order. Throughout, a sequence {cp, n>1} is defined by
¢n = by/|ag], n>1, and the symbol C denotes a generic constant (0<C<oo) which is not necessarily the
same one in each appearance. The symbols up1 or up| are used to indicate that the given numerical sequence

{up, n>1} is monotone increasing or monotone decreasing, respectively.

2. A PRELIMINARY LEMMA.

The key lemma in establishing Theorems 1 and 2 will now be stated and proved. It should be noted
that the conditions (2.2) and (2.3) are automatically satisfied for the standard assignment of ap=1, by=n,
n>1.

LEMMA. If
nP{]Y]>cp} = o(1) (2.1)
and either
c n ,C: 2 b2
cot 1, B <o), st £ (3)' = of P 2
j=1 i=1 'Elaj
J=
or
Cn 2 2
+1and ) a = O(naj), (2.3)
£ =ofud)
then

9.2 = ofb2
jglaj EY21([Y|<cq) = o(bn).

PROOF. Note at the outset that cp 1 under either (2.2) or (2.3) and that (2.3) ensures

Bt - o) e

Thus, (2.4) holds under either (2.2) or (2.3). Let cg=0 and dy =cp/n, n21. Define an array
{B,,, 0<k<n, n21} by
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2
n o, ¢
1 Eaj)( k+¢ k) for 1<k<n-1,n>2
1

2
(b j=
Bnk"{

0 for k=0,n,n>1.

It will now be shown that {Bnk, 0<k<n, n>1} is a Toeplitz array, that is,

n
Y IBnkl =0(1) (2.5)
k=0
and
Bnk—»O as n— oo for all fixed k>0. (2.6)

Clearly (2.4) entails (2.6). To verify (2.5), note that B, 20, 0<k<n, n>1, since ¢y . Now under (2.2), for

n n n=1 (k+1)2a2, | -k%d?
Y B, = (l ) a?)( I
k=0 nk b121 =1 I k=1

-1 ((k+1)2-k2)a2
(5 E2)E (<__>k_ﬁ) fince dal)

bn.ll

3 2 -
<(3 HNES) o0

and so (2.5) holds. On the other hand, under (2.3),

all n>2,

&2 2
dp! and ‘Elaj < Cnag, n>1.
J:

Then for all n>1,

L)

Eaj

=l G C
b2 T 2 a2’
n ¢n Ndp

Thus for all n>2,

-1 (k+1)2d2, -k2a2
B AR k+1 k)
(e

ndp /\k=1

Tf["):

0

(;92)( z;j (ae+3)dp +1-kd§))

n— n-1
= (ﬁg)(ki___: ((k+l)dk+1'kdl2()> + (ii%.)(kgldﬁ'”)

S Cnd2n 2_911_212@_ (since dnt)
ndj ndf
=0(1)

and again (2.5) holds thereby proving that {Bnk' 0<k<n, n>1} is a Toeplitz array.
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Then by (2.1) and the Toeplitz lemma (see, e.g., Knopp (7, p. 74] or Loéve [1, p. 250]),

é:ankkP“chk } = o(1). @.7)

Next, note that

1 & 25,2
aEY“I(JY|<c
b?lj ]J (I I_n)

=L a2 B2, <|Y|<c,)
b2 j=1 ' k=1 k-1=101="

c?‘P{ck_l <lYl<g}

(by the Abel “summation by parts” lemma)

2 2
L2 k%
< o2 j=laj k=1(_r‘)“"“y|>°k} +o(1) (by (2.4))

n
= k)gonnkkp{wpck} +o(1)

= o(1) (by (2.7))
thereby proving the Lemma. 0O

3. THE MAIN RESULT.

With the preliminaries accounted for, Theorem 1 may be stated and proved. As was noted in the
proof of the Lemma, the hypotheses to Theorem 1 entail (2.4) and so necessarily by, —oco. However, it is not
assumed that {by, n>1} is monotone. (In most SLLN results, monotonicity of {bp, n>1} is assumed.)

THEOREM 1. Let {Y, Y, n>1} be i.i.d. random variables and let {ap, n>1} and {bp, n>1} be
constants satisfying ap #0, by >0, n>1, and either (2.2) or (2.3). If (2.1) holds, then the WLLN
n
2 a(Y; - EYI(Yl<cn))
j=1 P

3.1)
By =0

obtains.

PROOF. Define Ynj = le(lelscn), 1<j<n, n>1. For arbitrary ¢>0,
n

2 (Y- V)

pi=

> c} < P{_LnJl[Yj # Ym]} < nP{[Y]|>cn} = o(1) (by (2.1)),
J=
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whence
YalY.-Y .
=1 J( j nJ) P, (3.2)
by
Also,
n
Y alY .-EY .
=1 ]( nj n.l) P o (3.3)
by,
since for arbitrary €>0,
n
j§1“j(‘(nj -EYy) ” s
P T > c} < 2b2 Ea EY“I(]Y|<cp) = o(1)

by the Lemma. The conclusion (3.1) follows directly from (3.2) and (3.3). D

REMARKS. (i) Apropos of the condition (2.2), if cy/n is slowly varying at infinity and
E 32 = O(nan) then

=1 12
n (¢ b
£ a2 = ofb3) and ;;(31) - ( n..2)
j=1 j=1 Y a
P
J-
PROOF. Note that
n
): 2
j=1 Cnan C(n/ecn) _ 1
T ) =—f —=o(1)
n
by slow variation (see, e.g., Seneta [8, p. 18]). Then slow variation yields (see, e.g., Feller [9, p. 281])
2 2
c. 2 2
=1 J nap 25‘2
=1’

(ii) Adler [10] proved a partial converse of Theorem 1.

(iii) In the spirit of Klass and Teicher [5], Adler [11] has employed Theorem 1 to obtain a generalized
one-sided law of the iterated logarithm (LIL) for weighted sums of i.i.d. random variables barely with or
without finite mean thereby generalizing some of the work of [5]. (Corollary 1 below had been obtained by
Klass and Teicher [5] and they used it in their investigation of the LIL for i.i.d. asymmetric random
variables.) To be somewhat more specific, Adler [11] employed the WLLN (3.1) to obtain the a.c. limiting
value of some (nonrandom) subsequence of 2 3 Y. /bn thereby yielding an upper bound for the a.c. value of

llllm inf Z aY /bn

The ensuing Corollary 1 is a WLLN analogue of Feller’s [12] famous generalization of the

Marcinkiewicz-Zygmund SLLN.

COROLLARY 1 (Klass and Teicher [5]). Let {Y, Yy, n>1} be i.i.d. random variables and let
{bp, n>1} be positive constants such that either by/nt or

b, 2
bat, 281, gg—»oo, and le(-f) =o(Phﬂ>. (3.4)

Then
}: Y - nEYI(]Y|<by)

=l . P o it aP{|Y|>bp} = o(1).
n
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PROOF. Sufficiency follows directly from Theorem 1 whereas necessity follows from the degenerate
convergence criterion noting that the family {(YJ - EYI(|Y|5bn))/bn, 1<j<n, nzl} is uniformly
asymptotically negligible. 0O

REMARK. In the Klass-Teicher [5] version of Corollary 1, the second condition of the assumption
(3.4) appears in the stronger form by /n|0.

The next corollary is an immediate consequence of Corollary 1 and is the classical WLLN attributed
to Feller by Chow and Teicher [6, p. 128].

COROLLARY 2. If {Y, Yy, n>1} are i.i.d. random variables, then

nY
.- v
.=1J

= Py

for some choice of centering constants {vy, n>1} iff
nP{|Y|>n} = o(1).

In such a case, vp/n = EYI(]Y|<n) + o(1).
The next corollary removes the indicator function from the expression in (3.1).

COROLLARY 3. Let {Y, Yp, n>1} be i.i.d. L) random variables and let {an, n>1} and {bp, n>1}
be constants satisfying ap #0, by >0, n>1, and either (2.2) or (2.3). If (2.1) holds and M = nﬁ»moo % aj/bn
=

exists and is finite, then

3 Y.
2 %Y

Ein— P MEY).

PROOF. First observe that (3.1) obtains by Theorem 1. Now lim cp = oo since a3 = o(b.%) by

(2.4). Then by the Lebesgue dominated convergence theorem, EYI(|Y|<cyp)—EY, whence

3 aEYI(Y|<en)
&._En__ — M(EY)

which when combined with (3.1) yields the conclusion. 0O

4. A WLLN WITH RANDOM INDICES.

In this section, Theorem 1 is extended to the case of random indices {Ty, n>1}. No assumptions are
made regarding the joint distributions of {Tp, n>1} whose marginal distributions are constrained solely by
(4.1). Moreover, it is not assumed that the sequences {Tp, n>1} and {Yp, n>1} are independent of each
other. It should be noted that the condition (4.1) is considerably weaker than Ty /ayp P for some constant

c€[0,00).

THEOREM 2. Let {Y, Yy, n>1}, {ap, n>1}, and {by, n>1} satisfy the hypotheses of Theorem 1
and let {Ty, n>1} be positive integer-valued random variables and 1<a; — oo be constants such that for
some A>0

P{g—: > ,\} =o(1) .1)

and

bhag] = O(b[an]) if A>1 (42
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hold. Then

Ty
j}zjlaj(Yj - EYI(IYlSc[an])) .

bon] -

PROOF. Let Y . _Yl(IY[<c[an]) j>1,n>1. Firstly, it will be verified that

T

n
Ya(v;- v )
J
=1 Py
Pfan])
For arbitrary ¢ >0 and all large n,
Th
By vy)

P{—B————[ ] > (}

ofEary e B,

j=1

{[): aY; # 2 aYm:] [Tn<Aan]} + P{Tn>Aan}

/\an]
P jL=Jl [|Yj|>c[an]]} +o(l) (by (4.1))

< [Aun]P{|Y|>c[an]} + o(1)
=(1+ o(l)))‘[un]P{]Y|>c[an]} + o(1)
= o(1) (by (2.1))

thereby establishing (4.3).

Thus, to complete the proof, it only needs to be demonstrated that

T,
By -on),

Pfan]
To this end, for arbitrary ¢>0 and all large n,

T
if a(¥yj - BYy)

P &ﬁ- > €}
[on]

> [T,,g,\a,,]} + P{Tn>,\an}

197

(4.3)

(4.4)
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Aap
<P U
=1

k.
2 o(Yag ~ BVey)

> cb[an]:l} +o(1) (by (4.1))

> ‘b[an]} + o(1)

k
Z (Y - BYy)

=P max
{1 <k<[Aag]

Dan]
< c_rbl%;—] j§1 Var(annj) + o(1) (by the Kolmogorov inequality)
n
. [Aen] 9ot
< gh— T afey 1(1YISegay) + o(1)
[on]

p Baly o .
5. ,§laj EY l(IYISc[an]) +0o(1)  if0<A<]
fon) J

c Denl, o
59— L WY 1(|Y|5c[’\an]) +o(l) ifA>l (by (4.2) and c.,r)
[,\an] =1
=o(l) (by the Lemma)
thereby establishing (4.4) and Theorem 2. 0O

REMARKS. (i) The referee to this paper so kindly supplied the following example which shows that
Theorem 2 can fail if the norming sequence {b[a T nzl} is replaced by {Tp, n>1}. Let {Y, Yy, n>1} be
n
i.i.d. Cauchy random variables and let

ap=1, bn=nl+€, Tp=n, ap=n, n>1

where ¢>0. Then (2.1) and (2.3) hold and trivially Tp/ap P | and hence the conclusion to Theorem 2

obtains, but
3 (v, - vi(jvi< Y
j§1 Y - BY(Iviserg,) =13 P
T, =5 +0.

(ii) The referee also suggested that the authors look into the question as to whether in Theorem 2 the
norming sequence can be taken to be {an. nZl}. The ensuing corollary provides conditions for the answer
to be affirmative. It should be noted that the pair of conditions (4.1) and (4.5) is equivalent to the single

condition
P{A' <at< ,\} — 1 for some A>A'>0

which is clearly weaker than Ty /ap ? ¢ for some constant 0<c<oo.

COROLLARY 4. Let {Y, Yp, n>1}, {ay, n>1}, {by, n>1}, and {ap, n>1} satisfy the hypotheses
of Theorem 2 and suppose, additionally, that by 1 and for some A>0 that
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P{},;: < ,\’} = o(1) (4.5)

and
_ e/ 4.6
Blag] = O(b[x'an]) if A<l (4.6)

hold. Then

Ty
j§1 aj(Yj - Ev1(|v|5c[anl)) .

—

n
PROOF. In view of Theorem 2, it suffices to show that b[an]/an is bounded in probability, that is,

for all €>0, there exists a constant C<oo and an integer N such that for all n>N

b,
[on } i
P SCY < 4.7
(b}

To this end, let ¢>0. If A’'>1, then letting C=1, the monotonicity of {by, n>1} guarantees that

blgy] S CP ,n>1 (4.8)

[*"“n]

whereas if A’<1, then (4.6) ensures (4.8) for some constant C<co. Thus, (4.8) holds in either case. Then for

Blay)
"{w—r"}

all large n,

< P{[b[an]>Can] [T,,g[,\’a,,]]} + P{Tn<[A'an]}
< P{b[v‘n]>Cb[/\,an]} +e (by bn! and (4.5))
= ¢ (by (48))

thereby establishing (4.7) and Corollary 4. O

(iii)) The ensuing example shows that, in general, Theorem 2 can fail if the norming sequence
{b[a I nzl} is replaced by {an, nzl}. Let {Y, Yy, n>1} be i.i.d. random variables with Y having
n
probability density function

f(y) = 55— L, \(¥), ~00<y<oo
}'2108 v [e,00)
where C is a constant and let
ap=1, by=n, Tp=[Vn), ap=n, n>1.

Now for all n>3, employing Theorem 1 of Feller [9, p. 281],
Wl o (l+o(l))C o
nP|Y>n}=nC/ T—dy:———:ol.
n y“logy log n

All of the hypotheses to Theorem 2 are satisfied and hence the conclusion to Theorem 2 obtains. Assume,

however, that
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B Y. - EYI(|Y [
. . - < P
j§1 sl Y { I_c[an]) j§1 Y, EYl(IYISn)) b,
= L8 49
) @ “o
prevails. Then
n n 2
Y, > | Y; - EYI(Ivi<n?)
=1 oy _j=1\1 P
S - Evi(lv|<n?) = - =0.
But by Corollary 2,
n
pop'd

=)
=L gyvigvicn) Bo.
whence via subtraction EYl(n<|Y|5n2) = o(1). But for n>3,
2 n’ o) 2
EYl(n<|Y|_<_n ) = /n viogy dy = C(log log n“ - log log n) = C log 2,

a contradiction. Thus, (4.9) must fail.

The last corollary of this section, Corollary 5, is a random indice version of the sufficiency half of
Corollary 2, and it is Theorem 5.2.6 of Chow and Teicher [6, p. 131). Corollary 5 follows immediately from
Corollary 4 by taking ap=1, by=n, ap=n, n>1.

COROLLARY 5. Let {Y, Yy, n>1} be i.i.d. random variables such that nP{|Y|>n} = o(1) and let
{Ty, n>1} be positive integer-valued random variables such that

Ty P

¢ — c for some constant 0 <c<oo.

Then
=1 y - EYI([Y|<n) = 0
T (I I_n) .

5. AN INTERESTING EXAMPLE.

In this last section, a generalization of a classical example is presented. A sequence of weighted i.i.d.
random variables {a;Yy, n>1} is shown, via Theorem 1, to obey a WLLN. On the other hand, the
corresponding SLLN is shown to fail. It should be noted that E|Y| = co. The classical example is the special

case 6=1 and ap =1.

EXAMPLE. Let {Y, Yy, n>1} be i.i.d. random variables with Y having probability density function

(y), -oco<y<oo

fy)= =B 1
y¥(log |y])? (~00,-€]Ule,00)

where 0<§<1 and C; is a constant. Then for every sequence of constants {an, n>1} with 0<|ay|1,

Zl‘a.Y.
=p (5.1)

nlan] 0,

but
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n n
LY. Y.
. jgla’YJ - j);lal J (5.2)
l;‘nl.sgg _nl-aﬂ_ = ~]rllnlg1° Al = 00 a.c

and, consequently, for any constant ¢ €(-00,00)

PROOF. Set bp=nlay|, n>1. Then cy=n, n>1, and both (2.2) and (2.3) hold. Now for all n>3,
employing Theorem 1 of Feller [9, p. 281],

(1+o(1))20 s
P 3
(los y) (log n)

nP{|Y|>n} = 2nC6/ =o(1),

and so (5.1) follows from Theorem 1 since EYI(]Y|<n) = 0, n>1.

Next, for arbitrary 0 <M < oo, EIYI = 00 ensures that

E P{IYn } = o0,
‘whence by the Borel-Cantelli lemma
P{lim sup lYn——“-I > M} > P{ly—ﬁn—I > M i.o.(n)} =1
n— 00

n-1
2% Y

Since M is arbitrary,

n-—oo n—oo nlanl

n v n-1 Y.
2 3Y; Elal i

< lim sup J
n— 00

+ lim sup

T a.C.
njap| n—oo (n- 1)|3n_1| ’

and so

lim sup ———— = o0 a.c.
n—oo nlap]

implying (5.2) via symmetry and the Kolmogorov 0-1 law. 0O
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