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n
ABSTRACT. For weighted sums a:Y: of independent ancJ identically.distributed random variables

,IJ (n l/=1 p
{Yn, n>l}, a general weak law of rrge numbers of the form :- na Y v bn ---,0 ts estabhshed where

1J\= /
{Vn, n_> 1} and {bn, n>_ 1} are statable constants. The hypotheses revolve botli the behavior of the tad of the

distribution of IYll and the grOWnbehavlors of the constants {an, n_> 1} and {bn, n_> 1}. Moreover, a weak

law is proved for weighted sums a;Y; indexed by random variables {Tn, n>_ 1}. An example is presented
"1

wherein the weak law holds but tl’trong law fails thereby generalizing a classical example.
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I. INTRODUCTION.

Let (Y, Yn, n_ I} be independent and identically distributed (i.i.d.) random variables defined on a

probability space (f/,s$,p), and let (an, n_1}, (Vn, n_1}, and {bn, n_l} be constants with an0, bn>0,

n_l. Then (anYn, n_l} is said to obey the general weak law of large numbers (WLLN) with centering

constants (vn, n_l} and norming constants (bn, n_1} if the normed and centered weighted sum

a.Y. n)/bn has the weak limiting behavior
j=l

n

j=t 0 (1.1)
bn

where denotes convergence in probability. Herein, the main result, Theorem 1, furnishes conditions on

{an, n_>l}, {bn, n_>l}, and the distribution of Y which ensure that {anYn, n>_ 1} obeys the WLLN (1.1) for

suitable {vn, n_>l}. It is not assumed that Y is integrable. Of course, the well-known degenerate

convergence criterion (see, e.g., Loire [1, p. 329]) solves, in theory, the WLLN problem. The advantage of

employing Theorem lies in the fact that, in practice, its conditions (2.1), (2.2), and (2.3) are simpler and

more easily verifiable than the hypotheses of the degenerate convergence criterion. Jamison et al. [2] had
n

investigated the WLLN problem in the special case where an>0, bn a;, n> 1, and max a. O(bn).
j=l _<j_<n
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Conditions for {anYn, n>_ 1} to obey the general strong law of large numbers (SLLN)

n

j--1
bn 0 almost certainly (a.c.)

had been obtained by Adler and Rosalsky [3,4]. In Section 5, an example illustrating Theorem is presented

and the corresponding SLLN is shown to fail.

The WLLN problem is studied in Theorem 2 in the more general context of random indices. More

specifically, let {Tn, n_> 1} be positive integer-valued random variables and let 1_<an--,o be constants such

that P{Tn/an>A} o(1) for some A>0. Theorem 2 provides conditions for

Tn
j=l V[Cn] 0,

b[an]
where the symbol Ix] denotes the greatest integer in x.

As will become apparent, Theorem 2 of Klass and Teicher [5] and Theorem 5.2.6 of Chow and

Teicher [6, p. 131] provided, respectively, the motivation for Theorems and 2 herein. Moreover, our

Theorems and 2 are proved using an approach similar to that of the earlier counterparts.

Some remarks about notation are in order. Throughout, a sequence {Cn, n>_l] is defined by

cn bn/lanl, n_> 1, and the symbol C denotes a generic constant (0<C<oo) which is not necessarily the

same one in each appearance. The symbols Unl" or Unl are used to indicate that the given numerical sequence

{Un, n>_ 1} is monotone increasing or monotone decreasing, respectively.

2. A PRELIMINARY LEMMA.

The key iemma in establishing Theorems and 2 will now be stated and proved. It should be noted

that the conditions (2.2) and (2.3) are automatically satisfied for the standard assignment of an-l, bn--n
n>l.

LEMMA. If

nP{lYl>cn} o(I) (2.1)

and either

then

al2EY2I([YI _<Cn) o(bn2).
j=l

PROOF. Note at the outset that cn’[" under either (2.2) or (2.3) and that (2.3) ensures

2 19.\
a. obfi). (2.4)

j=l

Thus, (2.4) holds under either (2.2) or (2.3).

{Bnk, 0_<k_<n, n_> 1} by

Let c0=0 and dn=cn/n n>_l. Define an array
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2 2

nnj=l J\ k

0 for k=0, n,n>l.

for l<k<n-1, n>2

and

It will now be shown that {Bnk 0_<k_<n, n_>l} is a Toeplitz array, that is,

n

k:__oIBnkl 0()

Bnk0 as n--,o for all fixed k>0.

Clearly (2.4) entails (2.6). To verify (2.5), note that Bnk>0, 0<k<n, n>l, since Cn’. Now under (2.2), for

all n>2,

n 2’/n-1 ((k+l)2-k2)d(< (12 j__laj )lkk=bn k ) (since dn |)

2/n_1 2\<- 3n a ldk =O(1)

and so (2.5) holds. On the other hand, under (2.3),

n 2dn" and a. < Cna2n n>l.
j=l

Then for all n > 1,

Thus for all n >_ 2,

n

j=l Cn C_C__

n (_(nl (k+l)2d2k+l-k2d)Bnk <
k=0 \ndnJ\k=l k

\nd/\k=l"

C2 ((k+l)dk+l + C ),k__ldk+,)
Cnd2n 2C(n-1)d2n

(since tint)-< + nd2n
0(1)

and again (2.5) holds thereby proving that {Bnk, 0<k_<n, n>_ 1} is a Toeplitz array.
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Then by (2.1) and the Toeplitz lemma (see, e.g., Knopp [7, p. 74] or Love [1, p. 250]),

Next, note that

n

k=0BnkkP{IYl>Ck o(1). (.7)

I ai2Ey21([Y[<cn)

a2 Ey21(Ck <lVl<Ck)2n2 j=l k=l

j--’’l k’--1 x x- IYI <ck

_i n n

n n-I 21_.. _.laj2(cp{.y,>0}. c2nP{,y.>cn} + k__l(Ck+l_C)p{,y.>ck})b2n j_-

(by the Abel summation by parts" hmma)

n 2 n1/c.4-1- k<
bn j=l k’--l k

n
E BnkkP{lY[>ck} + o(1)

o(I) (by (2.7))

thereby proving the Lemma. []

3. THE MAIN RESULT.

With the preliminaries accounted for, Theorem may be stated and proved. As was noted in the

proof of the Lemma, the hypotheses to Theorem entail (2.4) and so necessarily bn--oo. However, it is not

assumed that {bn, n_> 1} is monotone. (In most SLLN results, monotonicity of {bn, n> 1} is assumed.)

THEOREM 1. Let {Y, Yn, n>l} be i.i.d, random variables and let {an, n>l} and {bn, n>l} be

constants satisfying an0, bn>0 n>l, and either (2.2) or (2.3). If (2.1) holds, then the WLLN

n (yj )Eaj=l EYI(IYI-<Cn)
(3.1)-.P0

bn

obtains.

PROOF. Define Ynj Y.iI(IYj I-<cn), l_j_n, n_ I. For arbitrary >0,. ai(Y;-Ynj)
P/]J=1" -n >} <PJ[-Y.:f:Ynj]}<nP{[Y,>cn}=O(1)(by(2.1)).[j=t_.,
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whence

Also,

since for arbitrary >0,

J= -.P0.
bn

j=l
bn

P

(3.2)

(3.3)

n1.._[_ [ ai2Ey21(iYl<cn) o(1)> _< e2b2nj=lJ

by the Lemma. The conclusion (3.1) follows directly from (3.2) and (3.3). E!

REMARKS.
n 2" a. O(na2n), then

j=l

(i) Apropos of the condition (2.2), if cn/n is slowly varying at infinity and

orn 2

j=l
j=l

PROOF. Note that
n 2a.

j=l Cna2n C(n/cn)
2

o(I)b2n
by slow variation (see, e.g., Seneta [8, p. 18]). Then slow variation yields (see, e.g., Feller [9, p. 281])

o( 3 o

j=l

(ii) Adler [10] provM a rtial conver of Theorem 1.

(iii) In the spirit of Kl and Teicher [5], Adler [11] h employ Threm to obtain a generaliz

one-sid law of the iterat logarithm (LIL) for weight sums of i.i.d, random variabl barely with or

without finite mean thereby generMizing me of the work of [5]. (Corollary low h n obtain by

KI and Teicher [5] and they u it in their invtigation of the LIL for i.i.d. ymmetric random

variabl.) To mewhat more scific, Adler [11] employed the WLLN (3.1) to obtain the a.c. limiting
n

value of me (nonrandom) subquence of Yj/bn thereby yielding an upr und for the a.c. value of
n

lim inf a.Y./bn.nj=l
The ensuing Corollary is a WLLN analogue of Feller’s [12] famous generalization of the

Marcinkiewicz-Zygmund SLLN.

COROLLARY (KI and Teicher [5]). Let {Y, Yn, nl} i.i.d, random variabl and let

{bn, nl} itive constants such that either bn/n or

2

bn’, 1, bn 1(), and O (3.4)

Then n
E Y" nEYl(IYl<bn)
j=l

bn
0 iff nP{lYl>bn} o(I).
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PROOF. Sufficiency follows directly from Theorem whereas necessity follows from the degenerate

criterion noting that the family {(Yj- EYl(IYl__bn))/bn, l_<j_n, n_l} is uniformlyconvergence

asymptotically negligible. []

REMARK. In the Klass-Teicher [5] version of Corollary 1, the second condition of the assumption

(3.4) appears in the stronger form bn/n0.

The next corollary is an immediate consequence of Corollary and is the classical WLLN attributed

to Feller by Chow and Teicher [6, p. 128].

COROLLARY 2. If {Y, Yn, n_> 1} are i.i.d, random variables, then

n

j=IYj Vn
P-0n

for some choice of centering constants {vn, n_> 1] iff

nP{IYl>n} o(1).

In such a case, vn/n EYI(IYI_<n + o(1).

The next corollary removes the indicator function from the expression in (3. I).

COROLLARY 3. Let {Y, Yn, n_>l} be i.i.d. L random variables and let {an, n>_l} and {bn, n>_l}
n

be constants satisfying an:/:0 bn>0 n>l, and either (2.2) or (2.3). If (2.1) holds and M lim a./bn
n--,oj=

exists and is finite, then

n

J.’.-,l _.P M(EY).bn

PROOF. First observe that (3.1)obtains by Theorem 1. Now n--,oolimCn oo since a2n o(b2n) by

(2.4). Then by the Lebesgue dominated convergence theorem, EYI(IYI_<Cn)--, EY, whence

n
E a;EYl(lYl_<Cn)
j=l

bn M(EY)

which when combined with (3.1) yields the conclusion. []

4. A WLLN WITH RANDOM INDICES.

In this section, Theorem is extended to the case of random indices {Tn, n_> 1}. No assumptions are

made regarding the joint distributions of {Tn, n_ 1} whose marginal distributions are constrained solely by

(4.1). Moreover, it is not assumed that the sequences {Tn, n_l} and {Yn, n_l} are independent of each

other. It should be noted that the condition (4.1) is considerably weaker than Tn/cn-.Pc for some constant

c[0,oo).

THEOREM 2. Let {Y, Yn, n_l}, {an, n_l}, and {bn, n_l} satisfy the hypotheses of Theorem

and let {Tn, n_l} be positive integer-valued random variables and l_an--.oo be constants such that for

some A>O

and

b[,n] O(b[,n]) if >1 (4.2)
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hold. Then

TII
j-laj(Yj-= Ynj) _p O.

b[an]

For arbitrary >0 and all large n,

t b[an]
> cJ

Tn Tn
< P X a.Y. # __lajYnj

<_ P U I11>[. +o()
t j=l t-

(by (4.1))

=(! + o(,))A[Cln]P{iYi><[ttn]} +o(1)

=o(1) (by (2.1))

thereby establishing (4.3).

Thus, to complete the proof, it only needs to be demonstrated that

Tna.(Y. EYnj)J=lJ "J P0.

(4.3)

(4.4)

To this end, for arbitrary >0 and all large n,

EYnj)Ip]j=l
t %5 > }
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(by (4.1))

=P max a. Y .-EYnj > cb[an] +o(1)
_<k_<[=n] = n

-< )+
[n] = (by the Kolmogorov inequality)

if O<A<I

if A> (by (4.2) and Cn ]’)

o(1) (by the Lemma)

thereby establishing (4.4) and Theorem 2. []

REMARKS. (i) The referee to this paper so kindly supplied the following example which shows that

Theorem 2 can fail if the norming sequence {b[an], n_l) is replaced by {Tn, n_l}. Let {Y, YH, n>l} be

i.i.d. Cauchy random variables and let

an=l bn=nI+, Tn=n, an=n, n>l

where >0. Then (2.1) and (2.3) hold and trivially Tn/an--Pl and hence the conclusion to Theorem 2

obtains, but

[ aj Yj EYI(IYI <Clan] E Y" p
j=l J- -/. O.Tn

(ii) The referee also suggested that the authors look into the question as to whether in Theorem 2 the

norming sequence can be taken to be _{bTn’ n_l_}. The ensuing corollary provides conditions for the answer

to be affirmative. It should be noted that the pair of conditions (4.1) and (4.5) is equivalent to the single

condition

which is clearly weaker than Tn/an P c for some constant 0<c<oo.

COROLLARY 4. Let {Y, Yn, n_>l}, {an, n_>l}, {bn, n_>l}, and {Cn, n_>l} satisfy the hypotheses

of Theorem 2 and suppose, additionally, that bnT and for some At>0 that



WEAK LAW OF LARGE NUMBERS FOR NORMED WEIGHTED SUMS 199

and

pTn ,,} o(1) (4.5)
an <

b[anl O(b[Atanl) if A’<I (4.6)

hold. Then

j=l

bTn
PROOF. In view of Theorem 2, it suffices to show that b[anl/bTn., is bounded in probability, that is,

for all >0, there exists a constant C<oo and an integer N such that for all n>_N

(4.7)

To this end, let >0. If At_>l, then letting C=I, the monotonicity of {bn, n_>l} guarantees that

b[an] < Cb[A,an], n>_ (4.8)

whereas if At<l, then (4.6) ensures (4.8) for some constant C<oo. Thus, (4.8) holds in either case. Then for

all large n,

<_ P{[b[an]>CbTn’] [Tn >[A’an]]} +

_< P{b[an]>Cb[Atan]} + (by bn]’ and (4.5))

thereby establishing (4.7) and Corollary 4.

(iii) The ensuing example shows that, in general, Theorem 2 can fail if the norming sequence

{b[an], n_>l} is replaced by {bTn n>l}. Let {Y, Yn, n>_l} be i.i.d, random variables with Y having

probability density function

l[e,oo)(y), -oo<y<oof(Y) ;21oCg y
where C is a constant and let

an=l bn=n Tn:[q-6, an=n, n_> 1.

Now for all n_>3, employing Theorem of Feller [9, p. 281],

oo

nP{[Y[>n} nC
n y210g y

dy
(I+o(1))C

log n o(1).

All of the hypotheses to Theorem 2 are satisfied and hence the conclusion to Theorem 2 obtains. Assume,

however, that



200 A. ADLER AND A. ROSALSKY

Tn
j=l

aTn
_J=

vj-
P0 (4.9)

prevails. Then

n

j=l
n EYI([Y[ <n2) P

But by Corollary 2,

n

j=l EYl(lYl<n) 0.n

whence via subtraction EYI(n<IY[_<n2) o(1). But for n_>3,

EYl(n<[Y[<n2) /n2 C dy C(,og log n2- log log n) C log 2,
n y log’y

a contradiction. Thus, (4.9) must fail.

The last corollary of this section, Corollary 5, is a random indice version of the sufficiency half of

Corollary 2, and it is Theorem 5.2.6 of Chow and Teicher [6, p. 131]. Corollary 5 follows immediately from

Corollary 4 by taking an-1 bn-n, an--n, n>_l.

COROLLARY 5. Let {Y, Yn, n_>l} be i.i.d, random variables such that nP{[Yl>n} o(1) and let

{Tn, n_> 1} be positive integer-valued random variables such that

Tn -, c for some constant 0<c<oo.

Then

TR
j=l J_ EYI([YI<n) 0.Tn

5. AN INTERESTING EXAMPLE.

In this last section, a generalization of a claical example is presented. A sequence of weighted i.i.d.

random variables {anYn, n>l} is shown, via Theorem 1, to obey a WLLN. On the other hand, the

corresponding SLLN is shown to fail. It should be noted that ElY cw. The classical example is the special

case 6= and an 1.

EXAMPLE. Let {Y, Yn, n_>l} be i.i.d, random variables with Y having probability density function

C61yl)6 I(_f(y)
y2(los oo,_e]U[e,oo)(y),

where 0<6_(1 and C6 is a constant. Then for every sequence of constants {an, n_) 1} with

n
E a.Y.

(5.1)J= P 0,

but
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n n

j-1 j=l
lira sup -lira inf

and, consequently, for any constant cE(-oo,cx)
n

j=lP
n li-*moo nlan[ =c =0.

PROOF. Set bn’-nlanl n>l. Then cn=n n>l, and both (2.2) and (2.3) hold. Now for all n_>3,

employing Theorem of Feller [9, p. 281],

nP{[Y[>n} 2nC6 dy o(1),
n y2(log y)b (log n)

and so (5.1) follows from Theorem since EYI(IYI<_n) 0, n>_ t.

Next, for arbitrary 0<M<oo, E oo ensures that

oo
P Iynl

,whence by the Borel-Cantelli lemma

Plim sup ’Yn__J > M}> P{l > M i.o.(n)/ 1.

Since M is arbitrary,

n.Y.
n-1

I]=1 j=l
oo lim sup :’-’ lim sup

n --oc n --oo nlanl

and so

< lira sup + lim sup
(n-l) a.c.,

no nlanl n--o lan_l

implying (5.2) via symmetry and the Kolmogorov 0-1 law. E!
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