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ABSTRACT. Let X (Xij) be an m(1) by m(2) matrix whose entries Xij, < i < m(1),

j m(2); are Indeterminates over a field K. Let K[X] be the polynomial ring in

these m(1)m(2) variables over K. A part of the second fundamental theorem of

Invariant Theory says that the ideal I[p+l] in K[X], generated by (p+l) by (p+l)

minors of X is prime. More generally in [I], Abhyankar defines an ideal lip,el in

K[X], generated by different size minors of X and not only proves its primeness but

also calculates the Hilbert function as well as the Hilbert polynomial of this

ideal. The said Hilbert polynomial is completely determined by certain integer valued

functions FD(m,p,a). In this paper we prove some important properties of tese
integer valued functions.
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1. INTRODUCTION.

We assume all notations and conventions of Abhyankar [I]. Let Z,N,N* and Q

denote the set of all integers, nonnegative integers, positive integers and rational

numbers respectively.

For any two integers A and B, we let [A,B] {D Z: A < D < B}.

For any p N, we denote by Z(p), N(p), and N*(p) the set of all maps from if,p]

to Z, N and N* respectively.

For any p E N* and D E Z, we let Z(p,D) {d Z(p): d(1) + d(2) +...+ d(p) D}

and N(p,D) {d N(p): d(1) + d(2) +...+ d(p) D}.

For any p N, we let rec(2,p) {(k,i): k E [1,2] and i E [l,p]}.

For any p E N, by a hi-vector of length p, we mean a map a: rec(2,p) / N* which
for every k E [1,2] and i E if,p], associates a(k,i) E N* such that a(k,l) < a(k,2)
<...< a(k,p). In this case we put len(a) p.

By a bl-vector, we mean a bi-vector of length p for some p E N.

For any p N, m E N*(2) and a hi-vector a of length p, we say that a is bounded
by m and denote this by a m, to mean that
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a(k,i) m(k) for k [1,2] and [l,p].

Given any two bi-vectors a and a’ of lengths p and p’ respectively, we

define a a’ to mean that p > p’ and an a(k,t) a’(k,i) for k [1,2] and

i [I,p’]. We note that this defines a partial order on the set vet(2) of all bl-

vectors

Given any d N, by a bl-tableau of depth d, we mean a mapping

T: [l,d] vet(2), which to every e [l,d], associates Tie] vec(2).

A bl-tableau T of depth d is said to be standard if len(T[e]) is positive for

each e [I,d] and

TIll T[2] ... T[d].

Given any m N*(2), a vet(2) and a bi-tableau T of depth d, we say that

(I) T is bounded by m if Tie] m for e 1,2,...,d

(il)T is predominatpd by a if a Tie] for e 1,2,...,d.

The area of a bl-tableau T of depth d is denoted by are(T) and is defined as

d
are(T) E len(T[e]) if d 0 and

0 if d=O.

Finally for any element V in an overrlng of Q and any integer r, we set

and

V(V-I) (V-r+l) if r > 0
r!
0 if r <0

/ + r) if r 0
r

0 if r<O.

Let X (Xlj) be any m(1) by m(2) matrix whose entries Xij i m(1),

J m(2), are Indetermlnates over a field It. Let K[X] be the polynomlal ring in

these m(1)m(2) varlables. Clearly to every bl-vector a of length p and bounded by m,

there corresponds a uniquely determined p x p minor of X, say mor(X,a), formed by the

rows with row numbers a(l,l), a(l,2),***,a(l,p) and by the columns with column numbers

a(2,1), a(2,2),...,a(2,p). By convention we define mor(X,a) if len(a) O.

Further, to a bl-tableau T of depth d, there corresponds a product of minors of

X, which we call a monomlal in minors of X. A monomlal in minors of X is said to be

standard If the corresponding bl-tableau Is standard.

Using straightening formula, DeConclnl, Eisenbud, and Procesl [2], proved that

the standard monomlals in minors of X form a base for the vector space K[x] over K.

Abhyankar proves this by enumerating the number of standard bl-tableaux with certain

conditions. In fact, Abhyankar [3] proves that the number of standard bl-tableaux of

area V, bounded by m and predominated by a given fixed bl-vector a of length p Is

equal to

H(V) DEZ (-I) DFD(m,p,a) [cVD]
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P P
where C C[m,p,a] L (m(1)-a(l,[)) + E (m(2)-a(2,[)) p-I

i=l i=l

and FD(m,p,a), D Z, are iuteger valued funct[,s defined in section 2.

t|e further poves that If a is a given b[-vector of length p, bounded by m and if

lip,a] is the idea| in K[X] generated by all minors of X corresponding to the bi-

vectors b not predom,ated by a, then lip,a] is a homogeneous prime ideal in K[X] and

H(V) is the HIbert function as well as the Hilbert polynomial of lip,a] in K[X]. In

particular, if a(k,i) i for k [|,2] and i e [;,p], then lip,a] is the ideal in

K[X] generated by (p+l) by (p+|) minors of X and hence it follows by the above theorem

that it is a prime ideal in K[E]. This forms a part of the second fundamental theorem

of Invarlant theory and was originally proved by Pascal in 1888 and then reproved by

Mount [4], Eagon and Hochster [5] and others.

Now H(V) is a polynomial in V with rational coefficients and of degree C.

Further C! times the coefficient of V
C

in H(V) is Fo(m,p,a) which equals the order of

the irreducible variety defined by lip,a] in the (m(1) m(2)-l) dimensional projective

space over K (Refer to remark (20.18) of [I]). From this it follows that F0(m,p,a) is

a positive integer (see theorem (2.1) of section 2). Further arithmetic genus of

(-I)C[(Fo FI+ F2-...+ (-I)CFC) -I] 0. Thus FD(m,p,a), D Z determinelip,a] is

important geometric characters of the variety defined by lip,a] from Zariskl and

Samuel [6]. Hence it is interesting to study the properties of FD(m,p,a), D e Z.

2. INTEGER VALUED FUNCTIONS FD(m,p,a).
For any m e N*(2), p N*, we put vec(2) --the set of all bl-vectors, vec[2,p]

the set of all bl-vectors of length p and vec(2,m,p) {a vec[2,p]: a m}.

Let m E N*(2), p N*, a e vec(2,m,p) and k e [1,2]. Let k’ 2 if k and

k’ If k 2.
P

Let C[m,p,a,k] E (m(k)-a(k, i)),
i--I

P
C[m,p,a,k’] (m(k’) -a(k’,i)), and

i--!

C C[m,p,a] C[m,p,a,k] + C[m,p,a,k’] + p-l.

We now define integer valued functions FD(m,p,a), D Z.

For every i, j if,p], e e Z(p) we denote by G(m,p,a,e), the p x p matrix

whose (l,J)
th

entry

where e
i

e(i) for i 1,2,...,p. Further let for every E e Z,

HE(m,p,a det G(m,p,a,e). Then for every D Z, we define

eeZ(p,E)

FD(m,p,a) () ,(m,p,a)"
EZ

In view of the usual properties of binomial coefficients and determinants, we may

assume that 0 e
i

(m(k)-a(k,i)) for i 1,2,...,p. Hence the above sum is
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essentially fi_nlte.

In [l Ablly,aJk;ir i)r,,vL.,.q the fol

TdEOREM 2.1. l.et there b, g[v,,a any m N*(2), p : N* and a : vec(2,m,p). Then

we lave

()

(ii)

(tti)

Fo(m,p,a) is a positiv,_- integer,

for all D c Z, FD(n,p,a) is a ,negatlve integer and

{D c Z: FD(m,p,a) O}_[O,C(ra,p,a)l where

C(m,p,a) mtn{C[m,p,a,k], C[m,p,a,k’]}.

PROOF. Refer to Lemma 9.15 aud Theor.,ms 9.13, 9.17 of [1].

le further proposes the following problems. Given any m e N (2), p N and

a vee(2,m,p), does there exist a nonnegattve Integer C*(m,p,a) such that

Problem (I) {D e Z: FD(m,p,a) O} [O,C (m,p,a)]?

Problem (II) If so, then is tt possible ttmt

C (m,p,a) C(m,p,a)?

(Refer to remark 9.18 of [1]).

This paper settles both these problems in an affirmative manner.

3. THE MAIN RESULT.

We follow the usual convention that the sum over an empty family Is zero. For

any p N and A Z, we let J(p) all subsets of [l,p] and J(p,A) all subsets of

[l,p] with cardlnality A.

Let there be given any m N (2), p e N b vec[2,p+l], u J(P),U e [O,p] and

k [1,2]. Further let

2 ilk--

if k 2.

We define the sets M[p,b,k,u] and M(p,b,k,U) as follows:

bl[p,b,k,u]

a e vec[2,p]: a(k,t b(k,i for all i e [l,p],

a(k’ i) e [b(k’ i)+l b(k’ i+l)-l] for all t e u

and a(k’,J) b(k’,J), for all J e [1,p]\u

and M(p,b,k,U) -U M[p,b,k,u], u e J(p,U)

Given any m e N (2), p e N b e vec[2,p+l] and k e [1,2], let m e N (2) be such

that

(I) m*(k’)ffim(k’) and m*(k)=m(k)+l holds. Further let p N and

a e vec(2,m ,p be such that either

(2a) p p and m (k) a (k, 0 and (,i) b(,i) for all e [1,2] and

i [l,p] and b(,p+l) m()+l for all E [1,2] holds or

(2b) p p+l, (k) (k,p) 0 and a b holds.

Finally for every m e N (2), p e N a e vec[2,p], U e [O,p] and D e Z, we
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set
U

Su(m,p,a,D) FD_I(m,p,a)-

We now state a useful recursive formula in the followlng.

THEOREM 3.1. Let there be given any m N (2), p E N k [1,2],

b E vec[2,p+l] and m N (2), p N a g vec(2,m p such that (I) holds and

e[ther (2a) or (2b) holds. Then for every D Z, we have

, , , U

FD(m ,p ,a [. FD_l(m,p,a).
I [0,p] U [O,p] a M(p,b,k,U) I

PROOF. Refer to Theorem (9.8*), section 9 of [1].

In the above recurslve formula, by interchanging the summations over I and U and

by noting the fact that
U
I

0 if I > U ) 0, we see that

,
FD(m ,p ,a [ [ Su(m,p,a;D)

U[O,p] aeM(p,b,k,U)

We shall use this form of the recursive formula later [n this section.

In what follows, we shall prove some results which enable one to answer the first

problem posed by Abhyankar, in an affirmative manner [Refer to problem (I) at the end

of sect [on 2].

THEOREM 3.2. Let k e [1,2], p e N and b e vec[2, p+l] be given. Then we have

the ollow[ng.

(I) M(p,b,k,0) M[p,b,k,#] is a nonempty set consisting of the unique element

b e vec[2,p] obtained from b by putting

(,i) b(,i) for all e [1,2] and i [1,p].

(II) If M(p,b,k,l) # then {b(k’,J)}, j 1,2 p, is a sequence of consecutive

integers i.e. b(k’,J+1)=b(k’,J)+l, for all J if,p-l] and consequently

M(p,b,k,U) for every U ) I.

PROOF. (I) Since @ is the only subset of [l,p] of cardlnality zero, we have

M(p,b,k,0) M[p,b,k,#]. The rest follows from the definition of M[p,b,k,]. (II)

Let u
i

{i} where i is an arbitrarily chosen element of [I, p-l]. Then by definition

of U[P,b,k1,u1] we have,

M[p,b,k,Ul] @ <==> [b(k’,i)+ I, b(k’, i + I)-I] #

<=--> b(k’,l+l)=b(k’,i)+l, so that {b(k’,J)},

j=l,2,...p, is an increasing sequence of consecutive Integers.

Finally, if U > and u J(p) is any set of cardinally U, then there Is an

i e u such that i [I, p-l]. Now if a M(p,b,k,U), then we must have

a(k’,i) [b(k’,l) + I, b(k’,i + I) I], which is a contradiction since {b(k’,J)},

J 1,2, p, is a sequence of consecutive integers. Hence M(p,b,k,U) for every

U > if M(p,b,k,l) . Hence the theorem., ,
LEMMA 3.1. Let m N (2), p N b vec[2,p + I] and k [1,2] be given.

* * * * * *Let m e N (2), p e N and a e vec(2,m ,p be such that (I) is satisfied and either

(2a) or (2b) is satisfied. Let be the unique element of vec[2,p] obtained from b by

putting (,i) --b(,i) for all e [1,2] and i e if,p].
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"h,n we have Lhe follow.g:
.’- -F l(.n p a 0 :> (m p ) 0 and

Fl+j(m ,p ,a Fl+j(m,p, for every j N.

PROOF. In view of theorem (3.1) and (I) of theorem (3.2), we have

Fl(m ,p ,a )=F l(m,p,’) +
aM(p,b,k,

[Fl.(m,p,a) + Fo(m,p,a )]

+ Z Z Su(m,p,a" I).
Uc[2,p] acM(p,b,k,U)

But by theorem (2.1) of section 2, we have F0(m,p,a > 0 and FD(m,p,a )0 for
every D Z. Hence F l(m ,p ,a 0 ==> Fl(m,p,) 0 and M(p,b,k,l) . But then
by (II) of theorem (3.2), we have M(p,b,k,U) for every U 2. Hence given any
j N, repIactng by + J in the above formula we get

F + (m ,p ,a F + j(m,p,). Hence the lemma.

LEMMA 3.2. Let D N Assume that for all m e N (2), p e N
b vec[2, p+l], k [1,2] and for all m N (2), p N and a vec(2,m ,p
satisfying (I) and satisfying (2a) or (2b), we have

FD(m ,p ,a 0 ==> (1) FD(m,p,b) 0 and

(ii) FD+j(m ,p ,a )=FD+j(m,p,b) for all N.

Then for every a g vec(2,m,p), we have

FD(m,p,a) 0 ==7 FD+j(m,p,a 0 for every J N.

PROOF. We prove this by double induction on p and r(p) re(k) -a(k,p). Suppose

that for a e vec(2,m ,p ), FD(m ,p ,a --O. Hence by assumption, (1) and (ll) hold.

If r (p)Ira (k)-a (k,p) O, then p p so that (2a) holds and r(p) < r*(p*). Hence

by (1) and inductive hypothesis, we have FD+j(m,p,) --O, for all j N.

Hence by (ll) FD+j(m ,p ,a 0 for all J E N. On the other hand if r*(p*) 0 and P
p+l, then (2b) holds and as above, we get

FD+j(m ,p ,a O, for all j N.

Thus to complete the proof, we only need to prove the result when p and r(p)

m(k) a(k,p) O. But in this case C(m,p,a) 0 and hence by theorem (2.1), we see

that FD+j(m,p,a) O, for all D E N and J E N. Hence the lemma.

Now we are in a position to prove "the main result of this section.

THEOREM 3.3. For every D, j N we have the following:

FD(m,p,a) 0 ==> FD+j(m,p,a) 0, for every triplet (m,p,a) such that m N (2),

p e N and a E vec(2,m,p).

PROOF. By induction on D. In view of lemma 3.1 and lemma 3.2, the theorem is

clearly true if D I. Now assume that D is any integer greater than and the,
theorem holds for every D’ E N such that D’ < D. To prove the theorem for this fixed

D, we shall use lemma 3.2.

So let there be given m E N (2), p E N b E vec[2,p+l], k [1,2] and

m N (2), p N a vec(2,m ,p such that (1) is satisfied and (2a) or (2b) is
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satisfied.

Assume that FD(m ,p ,a O. By theorem 3.1, we have

FD(m ,p ,a FD(m,p,b)+ Z Su(m,p,a;D)=0.
U [|,p] acM(p,b,k,U)

Note that FD(m,p,a) 0 for every D Z. Hence, if for some U [l,p],

M(p,b,k,U) is nonempty, then by (3.1), we must necessarily have SU(m,p,a;D) O.

Su(m_ ,p,a;D) and the fact that -(U)l > 0 If c [0,U], we haveHence by deflnit[on of

FD_l(m,p,a) 0 for every I E [0,U]. In particular, FD_u(m,p,a) 0. But U I.

Hence by inductive hypothesis, we get FD+j_U(m,p,a) 0 for every j E N. llence,

given any j E N, by using the above identlty as j is successively replaced by

+ U I e N, as I varies from 0 to U, we get Su(m,p,a;D + j) 0. Thus for

U I, In view of (3.1), we have either M(p,b,k,U) or Su(m,p,a;D+j) 0, for all

Hence by recursive formula, we get FD+jm ,p ,a FD+j(m,p,b) for all j g N.

But by (3.1), we certainly have FD(m,p,b)=O.
Hence by Lemma 3.2, we get the required result.

From this theorem, it Im clear that, given any m N (2), p m N and

a E vec(2,m,p), the set {D E Z:FD(m,p,a) O} s an interval of the form

[O,C*(m,p,a)] for so nonegatlve lnteger C*(m,p,a).

Thus, Abhyankar’s conjecture Is true.

4. SOLUTION TO SECOND PROBLEM.

From section 2, we know that for every D E Z.

EeZ e E Z(p,E) m(k)-a(k i)-ei / eI

where m E N (2), p N a vec(2,m,p), k E [1,2] and

2 if k=

k

If k= 2.

Noting that 0 e
i

(m(k)-a(k,i)) for i 1,2,...,p; we see that

F
D
(m, p ,a) det

m(k)-a (k, i

P
if D C [m,p,a,k] E (m(k)-a(k,i)).

i=I

Hence in particular, FD(m,p,a)= I, if no two of (m(k’)-a(k’,J)), J 1,2,...,p are

consecutive and (m(k’)-a(k’,J))=(m(k)-a(k,J)) for J 1,2,...,p; where D C[m,p,a,k].

Hence by the main theorem of section 3, we see that FD(m,p,a) > 0 for

every D E [0,C(m,p,a)] where C(m,p,a) min{C[m,p,a,k], C[m,p,a,k’]}.
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,
Hence there e[st m c N (2), p c N and a vec(2,m,p) such that FD(m,p,a) > 0

for every D e [O,C(m,p,a)].

Affirmative answers to problems (I) and (II) enable us to write the Htlbert

Polynomial of I[p,a] in K[] In much tidier form as follows:

C (m,p,a) [cVD]H(V) (-1)DFD(m,p,a)
D=O

C*( * FD(where m,p,a) is some integer such that 0 C (m,p,a) C(m,p,a) and m,p,a) > 0,
for every D [O,C (m,p,a)].
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