RESEARCH NOTES

PROPERTIES OF α -EXPANSIONS OF TOPOLOGIES

DAVID A. ROSE

Department of Mathematics East Central University Ada, OK 74820

(Received August 25, 1989 and in revised form February 2, 1990)

ABSTRACT. The results of O. Njåstad for α -topologies together with the results of P. L. Sharma for anticompact perfect Hausdorff spaces are combined to produce several counterexamples in one space.

KEY WORDS AND PHRASES. α-topology, nowhere dense set, crowded space, anti-compact space. 1980 AMS SUBJECT CLASSIFICATION CODE. 54G20.

By an enlargement of the usual topology on the unit interval of real numbers, [0,1], several striking counterexamples are obtained at once. O. Njåstad [1] introduced and studied the lpha-topology au^{lpha} for an arbitrary topological space (X, τ) . This topology can be defined as the smallest expansion of τ for which the nowhere dense subsets of X relative to τ are closed. Njåstad [1] noted that $\tau^{\alpha} = \{U - N | U \in \tau \text{ and } N \text{ is nowhere dense}\}$, and Andrijević [2] found $Int^{\alpha}Cl^{\alpha}A = Int Cl A$ for every $A \subseteq X$ where $Int(Int^{\alpha})$ and $Cl(Cl^{\alpha})$ are the interior and closure operators for $\tau(\tau^{\alpha})$. Letting X^{α} be the space X with topology τ^{α} , it follows immediately that X and X^{α} have the same regular open sets, nowhere dense sets, meager sets, clopen sets, and semiopen sets. [3] Recall that a set A is τ -semiopen if A \subseteq Cl Int A. By X_s, the semiregularization of X, is meant the space X with topology τ_s having the τ -regular open sets as a base. Clearly, X and X^{α} have the same semiregularization. Topological properties mutually shared by X and X^{α} are called α -topological and are known [4] to coincide with the semitopological properties of Crossley and Hildebrand [5]. Among these is Baireness. Resolvability and separability are also α -topological since X and X^{α} share the same dense sets (Proposition 1). Of course, the α topological properties include the semiregular properties shared by a space and its semiregularization. Some important semiregular properties are: Hausdorff separation, Urysohn separation, extremally disconnectedness, IIclosedness, pseudocompactness, connectedness, and almost regularity. A space X is almost regular if and only if X_s is regular. Clearly X is regular if and only if X is both semiregular (X = X_s) and almost regular.

PROPOSITION 1. The spaces X and X^{α} share the same dense sets.

PROOF: Since $\tau \subseteq \tau^{\alpha}$, each dense subset of X^{α} is dense in X. Suppose that D is a dense subset of X and $W \in \tau^{\alpha} - \{\emptyset\}$. Then W = U-N for some $U \in \tau$ and N, nowhere dense. Since U-Cl N $\in \tau - \{\emptyset\}$, (U-Cl N) $\cap D \neq \emptyset$, so that $W \cap D \neq \emptyset$. Evidently D is a dense subset of X^{α} . \Box

By a theorem of P. L. Sharma [6], if the nowhere dense subsets of a crowded (without isolated points) Hausdorff space are closed then countably compact subsets of the space are finite, i.e. the space is anti-countably compact in the sense of P. Bankston [7] and therefore also anti-compact since compact subsets are finite. Further, such a space is nowhere locally compact [8] since interiors of compact subsets are empty. To use Sharma's result we note the following, whose proof is an easy exercise.

PROPOSITION 2. The space X^{α} is crowded if and only if X is crowded.

By considering two-point Sierpinski space, we see that crowdedness (like Baireness, resolvability, and separability) is an α -topological property which is not semiregular. In the remainder of this article [0,1] is the

unit interval of real numbers with the usual subspace topology. We now have the following examples.

EXAMPLE 1. The space $[0,1]^{\alpha}$ is a crowded, Hausdorff, nonsemiregular, almost regular, nowhere locally compact, Baire space.

EXAMPLE 2. The space $[0,1]^{\alpha}$ is a separable Hausdorff space which is not a k-space.

EXAMPLE 3. The space $[0,1]^{\alpha}$ is pseudo-compact but anti-countably compact.

Since the identity function from X^{α} to X is continuous, connected subsets of X^{α} are connected in X. But in general, it is not known whether connected subsets of X are connected in X^{α} . However, the connected subsets of the space [0,1] are the intervals which if not singleton are semi-open. Therefore, by showing that for semiopen subsets A of X, $(\tau|A)^{\alpha} = \tau^{\alpha}|A$, from connectedness being α -topological, it will follow that the connected subsets of [0,1]^{α} are precisely those of [0,1].

PROPOSITION 3. For any subset $A \subseteq X$, $(\tau|A)^{\alpha} \subseteq \tau^{\alpha}|A$.

PROOF: If $W \in (\tau | A)^{\alpha}$, then $W = (U \cap A) - N$ where $U \in \tau$ and N is a nowhere dense subset of $(A, \tau | A)$. Since N is nowhere dense in X we have that $W = (U - N) \cap A \in \tau^{\alpha} | A$. \Box

I. L. Reilly and M. K. Vamanamurthy [9] have shown that the reverse of the inclusion of Proposition 3 holds if A is semi-open in X. By the foregoing remarks, the connected subsets of $[0,1]^{\alpha}$ are the intervals. But since $[0,1]^{\alpha}$ is anti-compact, the continuous functions from [0,1] into $[0,1]^{\alpha}$ are constant since each has a nonempty connected and compact image.

EXAMPLE 4. Intervals are connected in the totally path disconnected space $[0,1]^{\alpha}$. ACKNOWLEDGEMENT. The author wishes to thank the referee for several valuable suggestions.

REFERENCES

- 1. NJÅSTAD, O. On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics, 15 (1965), 961-970.
- 2. ANDRIJEVIC', D. Some Properteries of the Topology of α-Sets, Matematicki Vesnik, 36 (1984), 1-10.
- 3. BOURBAKI, N. General Topology (Part I), Herman, 1966.
- HAMLETT, T. R. AND ROSE, D. A. *-Topological Properties, to appear in the <u>International Journal of</u> <u>Math. and Math. Sci.</u>
- CROSSLEY, S.G. AND HILDEBRAND, S. K. Semi-Topological Properties, <u>Fund. Math.</u>, 74 (1972), 233-254.
- SHARMA, P. L. A Class of Spaces in Which Compact Sets are Finite, <u>Canadian Mathematical Bulletin</u>, 24 (1981), 373-375.
- BANKSTON, P. The Total Negation of a Topological Property, <u>Illinois Journal of Mathematics</u>, 23 (1979), 241-252.
- 8. LEVINE, N. On Spaces Nowhere Locally Compact, Kyungpook Mathematical Journal, 22 (1982), 167-174.
- RIELLY, I. L. AND VAMANAMURTHY, M. K. Connectedness and Strong Semi-Continuity, <u>Casopis</u> <u>Pest. Mat.</u>, 109 (1984), 261-265.