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ABSTRACT ;. The problem of characterizing those locally convex spaces satisfying the Mackey
convergence condition is still open. Recently in [4], a partial description was given using
compatible webs. In this paper, those results are extended by using quasi-sequentially webbed
spaces (see Definition 1). In particular, it is shown that strictly barrelled spaces satisfy the Mackey
convergence condition and that they are properly contained in the set of quasi-sequentially webbed
spaces. A related problem is that of characterizing those locally convex spaces satisfying the so-
called fast convergence condition. A partial solution to this problem is obtained. Several
examples are given.
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1. Introduction and Definitions.

In [7], 28.3, Krthe pointed out that a characterization of locally convex spaces satisfying the

Mackey convergence condition (see definition below) did not exist. This problem is still open. In

[4], a partial solution is given, using spaces with web structures. In this paper, those results are

extended. Also, the related problem of describing those locally convex spaces satisfying the fast

convergence condition (def’med below) is briefly examined. Several examples are given along the

way.
Throughout this paper, E will denote a Hausdorff locally convex space. If A is a subset of E

which is absolutely convex, we will call A a disk, and we let EA denote the linear span of A,

endowed with the topology generated by the Minkowski functional of A. When A is bounded,

EA is a normed space, and the normed topology is finer than the topology inherited from E. If

EA is a Banach space, we call A a Banach disk. A locally convex space is locally_ complete if

each closed, bounded disk is a Banach disk. If (xn) is a sequence in E which converges to x in



18 T.E. GILSDORF

the normed space EA for some bounded disk A, we say that (xn) is Mackey (or locally

convergent to x. In case x 0, we say (xn) is Mackey null. Because all topologies involved

here are translation invariant, we will always use null sequences. Also, it is obvious that every

locally null sequence is a null sequence for the original topology on E. When each null sequence

is locally null, we say that E sadsfies the Mackey convergence condition. If (Xn) is a Mackey null

sequence and the corresponding disk A is a Banach disk, (Xn) is fast convergenA to 0. If every

null sequence is fast convergent to 0, then E satisfies the fast convergence condition.

We will also need the following information on webs. Detailed discussions of webs may be

found in [3], [10], and [11]. A web on a locally convex space will be denoted by /. A

sequence {Wml,m2 mk: k e N} of members from a web ’ such that Wml mk+l

Wml mk is called a strand. For convenience, we will denote a strand by (Wk).

Also, we assume throughout this paper, that for a strand (Wk) of

Wk+l c - Wk.
If W is a web on a locally convex space E, we say that ,@ is compatible with E if given any

zero neighborhood U in E, and any strand (Wk) from ,, there exists k e N such that Wk c U.

A compatible web ,# is completing if for each strand (Wk) from 74/and for each series

webbed. If is completing and for each strand (Wk) and each series klXk with xk e Wk, we

have

x e Wk_1,
r=k+[

then Wis and we say that E is strictly webbed,
2. Ouasi-Seo_uentiallv Webbed Spaces and Mackey Convergence

One obvious property of compatible webs is that the members of any strand can be made

small enough to fit into any zero neighborhood. If each null sequence has the property that its

members are eventually contained in a f’mite collection of strands, then it appears that the sequence

is converging with respect to a finer topology. This is the idea behind sequentially webbed spaces

and quasi-sequentially webbed spaces.

Definition 1; Let E be a locally convex space with a compatible web ,@. Then E is sequentially

webbed if for each null sequence (Xn) there exists a finite collection of strands {(Wk(1)),

(Wk(2)) (Wk(m)) from ’ such that for each k e N there exists Nk e N such that
m

xn e U Wk(i)
i=l
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for each n > Nk. If we have the weaker condition, that for each n > Nk
m

xn e U Vk(i),
i=l

where Vk is the closed, convex balanced hull of Wk, then we say E is q.uasi-sequentially
webbed.

Remark._.__.’ Every sequentially webbed space is quasi-sequentially webbed. An example of a quasi-

sequentially webbed space which is not sequentially webbed is given below.

Example 1" Let E tl/2, with the non-locally convex metrizable topology generated by the

decreasing sequence {Wn: n e N}. It is easy to show that 7’ {Wn" n e N} is a compatible

web for (E,). Let r denote the topology on E induced by the normed topology on/1. , is

then a compatible web for rl also. Now let 7,# {W’n" n e N}, where W’n is the /l_ closure

of the convex balanced hull of Wn, for each n e N. Since ’ forms a base of closed zero

neighborhoods for rl, (E,rl) is quasi-sequentially webbed under 7.g On the other hand, we

may pick xn e W’n\Wn for each n, so that Xn 0, but is not contained in the (only) strand (Wn).

Hence, E with the web 7, is not sequentially webbed.

In the following proposition, let {En:n e N} be a collection of locally convex spaces with En

En+ for each n, and each injection id: EnEn+ continuous. Then we write E indnlim En

to represent the inductive limit of the spaces En. An inductve limit E indnlim En is sequentially
retractive if for each convergent sequence in E there is some n e N such that the sequence

converges to the same limit in En.

Theorem 1:

(a) Every metrizable locally convex space is quasi-sequentially webbed.

(b) Let E indnlim En be sequentially retractive, with each En closed in E. If each En is

quasi-sequentially webbed, then so is E.

(c) Every strict (LF)-space is quasi-sequentially webbed.

(d) Every subspace of a quasi-sequentially webbed space is quasi-sequentially webbed.

Proof:

(a) Let ’ {Un: n e N} be a base of zero neighborhoods of the metrizable space E

consisting of absolutely convex, closed sets Un, with Un+l c 1/2 Un. Clearly,

is a compatible web for E and E is quasi-sequentially webbed under

(b) Let E indnlim En satisfying the hypothesis. For each n, let (n) denote the web on

En. Define the web

,, {Wm mk} k,m ..... mk e N} on E as follows:

Let {Wm1" m e N} consist of the collection {w(n)/l"/’1 ,n e N} where the subscripts are put

in one-one correspondence.
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Let {Wm1, m2: ml,m2 N} be the collection {w(n)l,/2:/1,/2, n N}, and so on. It is easy to

verify that ’ is a web on E, and W is compatible with E by [4], Proposition 9.

Now let xm ---) o in E. Then xm o in En for some n e N. Hence, there are ! strands

(Wk(n’l)) (Wk(n,/))
in 74(n) such that for each k e N, there is Nk e N such that

xme U Vk(n,i)
i=l

for each m _> Nk, where Vk(n’i) is the En-closure of Wk(n’i) for t’ and k e N. Each

Vk(n,i) is closed in En which in turn is closed in E; hence, each Vk(n’i) is closed in E.

Moreover, by the construction of 7’ on E, each strand of 74/(n) is a strand of 7,#. Hence, E is

quasi-sequentially webbed.

(c) Every strict (LF)-space satisfied the assumption in (b).
(d) Let E be a quasi-sequentially webbed space and let F be a subspace of E. If ,# is the web on

E, define the web " on F by

/’= {Wml mk F" k, m mk e N}

It is routine to show that 4/’ is a compatible web on F. Next, if xn ---) o in F,xn ---) o in E, so

there are strands

(WK(1)) (WK(m)) c

such that for each k e N, there is Nke N so that

m

Xn e U Vk(i),
i=l

where Vk is the E-closure of the convex, balanced hull of w(i)k

Hence,

xne (Umvk(i)) F
i=l

Um (Vk(i) F)
i=l

Um Vk(i)’,
i=l

where Vk(i)’ is the F-closure of the convex, balanced hull of Wk(i) F.

This shows that F is quasi-sequentially webbed.

Remark: If all the spaces En in (b) are in fact sequentially webbed, then the assumption that each

En is closed in E may be dropped, since in this case, E is sequentially webbed by [4],

Proposition 9.
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The proof of our next result is similar to the one for [4], Theorem 12; its proof is left to the

reader.

Theorem 2: Every quasi-sequentially webbed space satisfies the Mackey convergence condition.

RCmk: The motivation for defining quasi-sequentially webbed spaces is in the two corollaries

below; they allow us to enlarge the list of locally convex spaces which satisfy the Mackey

convergence condition. First, we need the following definition, given recently by Valdivia 12] in
connection with the closed graph theorem. In this context, a web is ordered if given arbitrary

positive integers k, ml mk and nl nk such that mi -< ni for k, then

Wml mk c Wnl nk

Definition 2: A locally convex space E is strictly barrelled if given any ordered and absolutely

convex web 74/= {Wml mk" k, m mk e N} on E, there is a sequence (mn of positive

integers such that W ml mn is a zero neighborhood in E, for each n e N.

Remark: Strictly ban’elled spaces are studied in detail in Section 6 of 12]. We note here that

strictly ban’elled spaces include unordered Baire-like spaces properly. (See 12] again).

Corollary_ 1" Every strictly barrelled locally convex space satisfies the Mackey convergence

condition.

Proof: Let E be strictly barrelled and let 74’ by any ordered and absolutely convex web on E.

Define the web 7, by

7,0"= {2-k Wm 1, m2 mk:k, ml, m2 mk e N}

Then W’ is another ordered, absolutely convex web on E, which satisfied the condition

Wk+l c - Wkfor each strand (Wk) of 74 Because E is strictly barelled, there is a strand (Wk) of’ such

that W k is a zero neighborhood of E for each k : N. Thus, E is quasi-sequentially webbed.

Corollary 2: If E is a Baire space with a compatible web, then E satisfies the Mackey convergence

condition.

Proof: By lemma 2 page 158 of 11 ], if E is a Baire space with a compatible web 7,0’ then there is a

strand (Wk) of 4 such that W k is a zero neighborhood in E for each k e N. This makes E

quasi-sequentially webbed.

We will now obtain a partial converse to Theorem 2. We note that in [4], Theorem 18 it is

shown that if E is locally complete, strictly webbed, and satisfies the Mackey convergence

condition, then E is sequentially webbed. We will generalize this. First, we need to introduce the

following:

Definition 3: A locally convex space E is locally Baire if for each bounded subset A of E there

exists a bounded disk B c A such that EB is a Baire space.
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Rem..ark: Every locally complete space is locally Baire. Moreover, in [2], page 3-4, example 6, an

example of a normed Baire space which is not complete is given; this represents a locally Baire

space which is not locally complete. Also, any strict (LF)-space represents an example of a locally

Baire space which is neither Baire nor metrizable.

Theorem 3: Let E be webbed and locally Baire. If E satisfies the Mackey convergence condition
then E is quasi-sequentially webbed.

Proof: Let xn-o in E. Using Kothe [7], 28.3, there is a sequence (rn)C(o,oo) such that rnoo as

n--,,*, and rnxn---o in E. Let A {rnxn:n e N}. Then A is bounded so there exists a bounded

disk B A such that EB is a Baire space. The injection id:EBE is continuous so it has a closed

graph. IfE is webbed using 74,’, then using Theorem 19, cor. page 722 of [10], there is a strand

(Wk) c 7’ and there is a sequence Ctk of numbers such that

id B B c Ok -k

for each k e N. Hence, for each n e N

rnXn e tk W k c tXk Vk

where Vk convbal (-Wk) convbal(Wk)

so that Ikl < for each n > Nk.rn

Then we have

Thus, for each fixed k e N, we find Nk e N

ICtkl
Xn en Vk c Vk

since each Vk is balanced.

Corollary_" Let E be locally Baire and webbed. Then E satisfies the Mackey convergence

condition if and only if E is quasi-sequentially webbed.

Example 2: We may use the above result to find an example of a quasi-sequentially webbed space

which is not strictly barrelled. Let E be the strong dual of a FrEchet-Schwartz space. Then E is

complete, hence locally Baire. Moreover, E is webbed by Proposition 2 page 157 of 11]. In fact

the web Won E is described as follows:

Let {Un:n e N} be a decreasing base of zero neighborhoods for the Fr6chet-Schwartz space F such

that E is the strong dual ofF. We define {Wm1" ml, e N} {Un: n e N}, where Un is the

polar of Un for each n e N. Then define

{Wm1,m2"ml,m2eN}=[ Un’neN},
and, in general,

k,ml,., mkeN}{Wm f Un’neN},mk
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Clearly, ’ {Wml mk k, ml mk e N} is an ordered web on E consisting of absolutely

convex, closed sets. Furthermore, E is not normable, so none of the members of 74/can be zero

neighborhoods in E, which means that E cannot be strictly barrelled. Finally, by 12.5.9 of [5], E

satisfies the Mackey convergence condition, so by Theorem 3, E is quasi-sequentially webbed.

3. The Fast Convergence Condition.

In [6], a sequence is defined to be fast convergent in a locally convex space E if there is a

compact disk B in E such that (Xn) is convergent in EB. This differs from our definition, but this

difference is easily rectified in theorem 4 below. Also, in [6], it is shown that a locally complete

bomological space satisfies the Mackey convergence condition if and only if it satisfies the fast

convergence condition. In this section we will show that "bornological" may be removed from that

statement and that the only difference between a locally convex space satisfying the Mackey

convergence condition and one satisfying the fast convergence condition is the presence of local

completeness. Finally, we will make some statements connecting this section with the previous

section.

Theorem 4: Let E be a locally convex space. Then the following are equivalent:

(a) E satisfies the fast convergence condition.

(b) For each null sequence (Xn) in E there is a compact disk K in E such that Xn--)o

in EK.

(c) E is locally complete and satisfies the Mackey convergence condition.

Proof: To show (a)(b), let Xn--)o in EB where B is a bounded Banach disk. Then since EB is a

FrEchet space, 35.7,(4) of [8] applies; namely, there is a compact disk K such that XnO in EK.

Next, to show that (b)=,(c) note that under the assumptions in (b), we need only show that E is

locally complete. To do this, we use 5.1.11 of [9], where it is shown that a locally convex space is

locally complete if the closed absolutely convex hull of each null sequence is compact. Let (Xn) be

a null sequence in E. Then Xn---)o in EK for some compact disk K in E. EK is a Banach space
([9], 3.2.5) so if A denotes the EK closure of convbal ({Xn: n e N}), then A is compact in EK.

Since the injection id: EK---)E is continuous, A is compact in E, too. The assertion is now obtained

by showing that the E -closure of convbal ({ Xn: n e N }) is A. Denote by Ao, the closure of A in E.

Since A is bounded in EK, there is a , > o such that A c ,K. kK is closed in E, so we have Ao c

,K c EK. Now take Xo e Ao and let (xct) be a net in A such that xct ---)Xo in the topology of E.

Note that id: EKE is continuous and that {n" K: n e N} is a base of zero neighborhoods for EK
consisting of sets closed in E, hence also closed in the linear hull of K. Thus, by 3.2.4 of [5], Xct

---)Xo in the topology of EK. Moreoever, A is EK-closed, so Xo e A, which shows that Ao A.

Finally, (c)=,(a) is obvious.

Corollary 1: Any locally convex space satisfying the fast convergence condition is locally complete.
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Corollary_ 2: Any metrizable, incomplete locally convex space satisfies the Mackey convergence

condition but not the fast convergence condition.

oof: Any such space is quasi-sequentially webbed by Theorem (a), but cannot be locally

complete by ], II.2.

Corollary_ 3: If E is locally complete, then E satisfies the fast convergence condition if and only if E

satisfies the Mackey convergence condition.

The next two results are combinations of Theorem 4 above and results from the previous section.

They give characterizations of locally convex spaces satisfying the fast convergence condition for

the case where the spaces are webbed.

T.h.eorem 5: Let E be a webbed locally convex space. Then the following are equivalent:

(a) E satisfies the fast convergence condition.

(b) E is locally complete and quasi-sequenti’,dly webbed.

This is an immediate consequence of Theorems 2, 3, and 4.

For the result below, we recall that an inductive limit E of locally

convex spaces is gulr if each bounded set in E is contained in and bounded in one of the

constituent spaces.

Theorem 6" Let E be a regular inductive limit of locally complete webbed spaces. Then the

following are equivalent:

(a) E satisfies the fast convergence condition.

(b) E satisfies the Mackey convergence condition.

(c) E is quasi-sequentially webbed.

To show (b) <=> (a), it suffices by Corollary 3 of Theorem 4 to show that E is locally

complete. Hence, let A be a bounded subset of E, where E indn lim En. Then A is bounded in

Eno for some no e N. Thus, if B is the Eno-closure of convbal (A), then B is a bounded Banach

disk in Eno, hence also in E. Moreoever, A c_. B, so we have shown that every bounded subset of

E is contained in a Banach disk. It follows now by [9], 5.1.6, that E is locally complete. Finally,

we obtain (a) <=> (c) by noting that an inductive limit of webbed spaces is webbed ([3], IV.4.6);

the assertion then follows from the local completeness of E and Theorem 5.

As in the previous section, we give some examples.

]Example 3" It is shown in [4], Example 15, that/lwith its weak topology is a locally complete,

non-bornological, non-metrizable locally convex space satisfying the Mackey convergence

condition. This space also satisfies the fast convergence condition since it is locally complete.
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Example 4: In this example, we show that there are locally complete webbed spaces which do not

satisfy the Mackey convergence condition, hence, not the fast convergence condition either. Let (E,

I1.11) be any Banach space having weakly convergent sequences that are not norm convergent. For

instance, E could be the Banach space LP([0,1]), where < p < oo. Let B denote the closed unit

ball of E. Then the web , {2-nB n e N} is a compatible web on E for which E is webbed.

Moreoever, we show that E with its weak topology is also webbed with respect to 7,#.

First, ’ is compatible with t since each weak zero neighborhood contains some member of ’.

Next, let (Xn) be any sequence in E such that Xn e 2-n B for each n e N. Since ’ is a completing

web with respect to I1.11, Xn is norm convergent in E, hence this series is also weakly convergent
n=l

in E. Thus, 7’ is completing for

Furtheremore, it is clear that a closed, bounded disk in E is a Banach disk with respect to T

if and only if it is a Banach disk with respect to T1, where T and T are any topologies which are

compatible with respect to the duality <E,E’>. Hence, since (E, I1.11) is complete, (E, ) is locally

complete. Therefore, by corollary of Theorem 3, (E,o) satisfies the Mackey convergence

condition if and only if (E, o’) is quasi-sequentially webbed. However, if (Xn) is a weakly null

sequence which is not norm convergent, then (Xn) cannot be contained in the (only) strand (2-n B)

of 4/, since this would imply tt,c ,orm convergence of (xn). Thus, (E,) is not quasi-sequentially
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