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ABSTRACT. We examine a class of groups G, having a certain growth condition. We
given an estimate for the norm of the inverse of an element in ll(G) in terms of the

spectral radius and the cardinality of the support.
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l. INTRODUCTION.

Throughout this work G is a discrete group and M(G) is the usual measure algebra
on G: we write § for the unit of M(G), p*v for the (convolution) product of two

measures u, v € M(G).

The purpose of this paper is to investigate the Following problems: Let
u € M(G) have finite support and the (convolution) inverse of (&-p) exist in M(G). Is
it possible to estimate the norm l'(&—u)_l'l of it?

One can easily realize that this problem becomes more interesting in the "limit”
case, where the support of u is infinite. One also can realize the connection of this
with the general problem of the invertibility in M(G); namely the characterization of
the class of Hermitian groups G (see [1]) or the equality of different norms and
spectrums in M(G) (see [2], [3] and [4]).

Our work here can be separated into two parts. In the first part we consider the
class of groups A and we give an estimate of ll(&-u)-l|l and of 'Iexpu" in terms of
the spectral radius r(u) and of the cardinality of the support of .

In the second part we examine the relation of the class A, with the class of
nilpotent groups and [FC] groups (groups having finite conjugacy class) (see [1]). We
show that nilpotent groups are A-groups and that the class A is closed under finite
extention. We should note that be Gromov's well known result, any finitely generated
group G with polynomial growth is a finite extention of a nilpotent group, and so it
is an A-group. It is remarkable to note that all known Hermitian groups, as they are
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refervred to in [1], are A-groups. We shall complete this introduction with some

definitions and notations.

We say that G is an A-group if there is a map «x: J »

N, where J is the set of
all finite subsets of G, and a A €

N such that for any F €]

#HEY < (“F’:“‘l)x, ne N

where F'= F F ... F (n-times) and #F is the candinality of E.

An n-word in the elements of F is any (reduced) word of length n. We denote by

(F")' a collection of n-words in the elements of F which as a subset of G consists of

all distinct elements of F%. Finally we shall denote by un the convolution product

u*pese*y (n-times); the spectral radius r(u) of p is the limit lim |'un'|l/n.

n»®

2. NORMS OF CERTAIN INVERTIBLE MEASURES.

We are going to show the following:

THEOREM 2.1. Let G be an A-group and let u be an element in M(G),

with finite
support F and r(y) < 1.

Then 6-p is invertible such that

coy A
Hes-w™ ] < eru)™F (2.1)

where «k(F) and xnate constants determined from the A-group structure. Furthermore
1f expuy = J ET we have

B0 expu| | < expCk(E) () (2.2)

PROOF. First we observe that for any n € N

Wl = 1T ool
x €G
<t (Fn)l/Z Il"nllz

< # (F“)llzsupllu“*g|'2.(g € lz(G),||g||2-l)

<t (EHY 200"

where ||.||2 is the norm 1in 12(0) and p(p) is the norm of the 1left regular
representation, i.e. the norm of the operator p: 12(G) > lZ(G):f > p*f.

Since
p(u) < r(p) we have

") < #EMHY2 e on. (2.3)

Now by (2.3)
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/

|I6+u+u2+ eee ]. <1+ #(F)1 2r(u) +

2)l/zr\u)2+ e

+ # (F
oo
, +n-1,A
¢ 2 \K(F) n l) r(u)n
n
n=0
Kn-1.A  KMn-1

Now let K = x(F) we see that ( n )7 < n ). In fact,

n
< I (l [(K—l)+1])‘ + j—‘-l-)
j=1 ] ]

n A
<1 E2Ls
=t 3

A
< (K +n-1

n

)

Thus . o
||6+u+u2+... Il < I (<CF) by (y®
n=0 n

and since r(uy) < 1, by the binomial formula, (tS-u)-l exists and we obtain (2.1).

To see (2.2) we observe that since «x > 1 and j > 1, (fil + 1) € k and

n
< I (ﬂ;t1+ 1)
=1

< k(F)™ (2.4)

(K(F):n—l)k A

Thus by (2.3) and (2.4)

® n
|expul| < 20 &5!—) r(w"
n.

G LT

n=0 "
< I A w@con”
n=0 =’

= exp(K(F)*r(w).

3. THE CLASS OF GROUPS A.

In this section, we show that [FC] groups and nilpotent groups are A-groups. We

also show that the class A is closed under finite extention.

First we examine the growth of [FC] groups.
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PROPOS(TION 3.1. Let G be an [FC] group and F be a fini%e subsuet of G. Then

#(FF) < (k+:°l) «r e N)
where k = # g %jF[f]), [£f] is the conjugacy class of f.
PROOF. We show that if [F] = U [f]

feF

ne?y < rE?y < 5h

Given f, g e F, f # g, there {s an element g; (say)
that fgf-l=gl, and so fg = glf.

[g] € [F] such

Hence any 2-word in the clements of [F] consisting of two different letters ls

equal to another 2-word in the elements of [F].

Thus [F]2 has no more than k elements f2 and k(k-1)/2 elements fg where

f, ge¥F, £ +g. It is clear that

1 E?y xRS L O,

We suppose that the Theorem {s true for any r < n, we show that it is also true for

r = Ne

We denote by ¢(g) the number of all appearances of a g € [F] in the words

of ([F1™'.

If all elements of [F] had the same chance to appear in ([F*])' then for

each g ¢ [F], 4(g) = ¢ ([F1™).
Thus we may consider a g € [F] such that

# (FI™) < £ o)

(3.1)

Since for any f ¢ [F] f # g, there is some f, (say) such that fg = gf,. Hence

without loss of generality we may assume that in any word of ([F]n)', either there is

no g or all g's keep the left place of the word. Now from each word of ([F]n)',

where g appears, cancel one g. The resulting (n-1)-words form a subset of distint

elements of [F]n_l; we denote this set by g-x([F]n)'. Hence from our hypothesis it

is clear that

@ < I+ e ()

where ¢l(g) is the number of all appearances of g in g—l([F]n)'.

n-l  k+n-2
(&) < = Cpy)

then by (3.1) and (3.2) we obtain

crpq D k n-1, k+n-2
# ([F]7) < Y 1+ —E—)( n=1 n

and so in this case there is nothing to show.

(3.2)

Suppose that

(3.3}

If the inequality (3.3) does not occur, from (3.1) and (3.2) we hav~
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LT AN kik#n-1)
CETDY < 2 Gy + Doy (@) < =Hieas ¢y (8)
In a similar way we define ¢i(g) (1 <1 < n-1) i.e. the number of appearances of

g in the collection g—i([F]n)'.

As 1n (3.2)
k+n-1-1

¢i_l(g) S U ) + ¢i(g) (i=2,3,...,n~1)

and if for some i < n-1

k+n-i-1

n-i ) (3.4)

n-i
¢ (8 < 5«
it is nothing to show. If the inequality (3.4) does not occur for any i < n~i1 we
observe that

k
D

,-1(8) < %-(

In this case we write

k(k4n-1) ... Ck+1) _ (k+n-1)!
n.(n-1) .. 1 (k=-1)!n!

# ((F1™) <

and this completes the proof.
COROLLARY 3.1. 1If G is abelian and F is a finite subset of G then,

&y < (¢ F:“"), re N

PROOF. Clear

LEMMA 3.1. Let G be a discrete group with a normal subgroup K such that G/K is
abelian, and let 7 be the canonical map w:G » G/K. If FCG is such that #F = # n(F),
then the number of all r-words in the elements of F(r € N), in a given class of G

modulo K can not be greater than

#F + r-1
( r

).
PROOF. Let % € G/K fixed and . - N et

Note that Jr and F¥ in this proof mean collections of r-words, which as elements of G

may not be distinct.

We shall denote by # J. the cardinality of J_, and we shall show that
#aE™y < T
Let x,y € F and xy 5.12, then yx e.]2; in fact since G/K is abelian
a(xy) = n(x)a(y) = n(yx). Now suppose that there is a z ¢ F such that x,z (or z,x)
is in.]z, i.e. w(x,y) = n(x,2z) and so u(y) = n(z) and # n(F) < # F-contradiction.
Hence it is clear that #]2 < # F and (3.5) follows.

(3.5)

We suppose that Lemma 3.1 is true for any r > n-1 and we show this for r=n. For
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for some g € G/K, let
ot~
Jn =7 (g)N F .
If all elements of F had the same chance to appear in J, then the number of all

appearances ¢(x), x ¢ F, of x in the words of J  should be

o) =g # T

We consider a x € F such that

#F .
#.Jn i $(x) (3.6)

From the set of all words in]J n where x has at least one entry we cancel one x.
We denote by ,J, the collection of all the resulting (n-1)-words. We show that  J,

is in a class of G modulo K.

Let w, wp,w'}, W'y, be words in the elements of F such that w, xw,,
wi x w ) 0 Since n(wl x wz) = "(wi x wi), we have n(wlwz) = u(wiwé) and  J, 1is
as we claimed.

Now, the set xJ, by our inductive hypothesis has cardinality no greater than
_#F+n-2

n-1 ) and so

260 < TF70) g 0

where ol(x) is the number of appearances of x inyJp.

As in Proposition (3.1), (3.7) in the case where

9 (x) < ?——-(#sz;

it 1s nothing to show. If the inequality above is not true by (3.6) and (3.7) we
obtain

#F #F+n 1
l'l

#] < $,(x)
We complete the proof in the same arguments as in Proposition 3.1.
PROPOSITION 3.2. Any nilpotent group G is an A-group with k(F) = #F and
A = 2q-1, where q is the index of G and F is a finite set.
PROOF. Let G = AOD Al:>...'.>Aq_l :>Aq = {e} be the normal series of a
nilpotent group G of index q. We note that Ai—l/Ai is the center of G/Ai

(1 < i < q-1) and we denote by n, the canonical map G » G/Ai'

i
It is obvious that for any FCG and r € N

#E) < #(n (F)max (# Y@ NFTE e G/A 3 (3.8)

We denote by |Fr|l the RHS of (3.8).

We shall show that there are q positive integers L PRERFLA such that



INVERSES OF MEASURES ON A CLASS OF DISCRETE GROUPS 267

#(F) = wn_ +m +...+m and
1 2 q

m,+r-1 2 wm,+r-1 2 m tr-1 2 m_+r-1
2 q-1 q

r 1
Fh cc 0 0y o5 ey (3.9)

If q=i, i.e. G is abelian. Corollary (3.1) implies (3.9). We suppose that (3.9)

is true for each nilpotent group of index q = p - 1.

Let G be nilpotent of index p. Since G/Al is abeltan by Lemma 3.1 if
#F < # nl(F).

We have, ’Fr‘l < \# F : r—l)2 .

let # (nl(F)) =m, < # (F), then F can be written as

1

F = {x1 a,: 1 <1 <my, 1 <3 < #(F)—ml}

3 r

where wl(xi) # nl(xj) i#t3,1<3¢« m, and all aj's are in A;. By (3.8) we obtain,

m,+r-1

[ef), < < ’t y # ] (3.10)

where Jl = Il(g) FY, for some g ¢ G/Al. Any element of ﬁ can be written as

X, @, X, A, eee X, Q& (3.11)
SRR P L
where (xilxi e Xy ) € E, each f, (1 ¢t < r) is one of 1,2,...,m; and each j, is
one of 1,2,...,28F-ml.r
- ml+r-l
By Lemma (3.1) the cardinality of all Xy eee Xy in g is < ( . ) and so
1 r
. ml+r—l 7
#Jl<( )#l
where
"
Jl X, lei Fl e Xy Fl
1 2 r
Xy Xgoeee X, is fixed suitably choosen from (3.11) and belongs to E;
1 72 r

1
Note that if q = 2, ;hen A; is the center of G, all a,'s commute with xi's and by
r F-m +r-1
Corollary (3.1), lFl' < ( rl r ); thus by (3.10) and (3.12), (3.9) follows.

As in (3.8), for some g ¢ G/A2 we have

F, = {aj: 1 <3< # F—ml}

' -1 ~
PIp <m0 4y @ NI (3.13)
Since AI/A2 is the center of G/A2 and FlC A, by (3.10), (3.12) and (3.13) we
obtain

m,+r-1 2
[F¥f, << lr ENIHE (3.14)
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where |F;'l is defined as ‘Frll.

Since A is a nilpotent of index p-1 we apply our inductive hypothesis in (3.14)
and for q = p we obtain (3.9).

Now if we replace ml,...,mq in (3.9) by #F we see that G is an A group with
constants k = 1 and A =2q-1.

PROPOSITION 3.3. The class of A-groups 1is closed under extensions by finite
groups.

PROOF. We may write G/A = (dlA, d. A, ..., dsA} where dl'dz"“’d are s

2 s
representatives of all the different classes of G/A; without loss of generality let ds

= e the unit of G. We may also write

dyd; = a(i,3) d(1,3) (1 <1, j <s)

where each d(i,j) is one of dy,...,d; and each a(i,j) is in A.

Let F = {di xl""’dimxm}' #F=m, each dit is one of d;,...,d  and X, €A
(I'< t < m).

Let <x,> = !

5 3 =1,2,00,8} (1 €1 <m) and

xidj

d, x, d X, ees d X (3.15)
gty 4y P

be a typical r-word in the elements of F. Each word in (3.15) is in the set

<x11> u(jl,jz) d(jl’j2)xi2"' dJ x, or in

r r

X, or finally in

r r

<x,> ali,3,) <x, > ale,j,) oo d
1] i) ™y, 3 3

<x1 > <xi D eee <x1 > a.d. (3.16)
1 2 r

where a € A and d ¢ {dl’dZ""’ds}'

It is clear that the cardinality of the r-words in the elements of F, as in
(3.15) 1is less than the candinality of the words in (3.16) in the elements
of (<x1>, veey <xm>}, which is a subset of the A-group, A. Thus G inherits the growth
of A.
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