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ABSTRACT. An exteansion of the Helson-Edwards theorem for the group algebras to Banach
modules over commutative Banach algebras is given. This extension can be viewed as a

generalization of Liu-Rooij-Wang's result for Banach modules over the group algebras.
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1. INTRODUCTION.

Let A be a commutative complex Banach algebra with a bounded approximate identity

{ux} of norm B and denote by @A the class of all nonzero homomorphisms of A into the

field of complex numbers. The space ¢A’ with the Gelfand topology, is called the
carrier space of A. Let X be a Banach left A-module. A continuous module homomorphism
of A into X is called a multiplier of X. We introduce a family {X¢: ¢ € QA} of Banach
A-modules such that any multiplier T of X can be represented as a function T on &,
with T(¢) € X¢ for each ¢ € ®,. 1In this setting we give an extension of the Helson-
Edwards theorem for the group algebras to Banach modules. We also observe that this
extension can be viewed as a generalization of Liu-Rooij-Wang's result for Banach
modules over the group algebras. We further consider a local property of multipliers
when A is completely regular.
2. REPRESENTATION THEOREM OF MULTIPLIERS.

For each ¢ € OA, let H¢ denote the maximal modular ideal of A corresponding to ¢

and define

xb = SPOX + (1 - e )X},

¢

where ;; denotes the closed linear span and e, is an element of A with ¢(e¢) =1,

¢

Note that X¢ does not depend on the choise of e¢.
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Throughout the remainder of this note we will assume

N\, s = {0}. .
RN SP(M¢) {0} (2.1)

In the case of X = A, the condition (2.1) is equivalent to the semisimplicity of A.
The space sp(AX) is called the essential part of X and is denoted by X, Since A has
a bounded approximate identity, it follows that Xe = AX from the Cohen-Hewitt

factorization theorem (see Doran-Wichman [1]). We also have
¢ Iy
X Xe sp(M¢X) (2.2)
for all p ¢ ¢A. In fact, let ¢ ¢ QA’ x € Xo Xe and ¢ > O. Since x € X¢, there

exist al,...,an M and xl,...,xn, y X such that

¢

n
||x - 121 ax; - (1 - e¢)y|| < /8.
Therefore for each A, we have
n
"uxx - (121 uya x, + (uA - uxe¢)y)|| < €.

A
Consequently, we have that x¢ EEKM¢X) and hence X¢f\xg:§E(M¢X). The reverse

Letting € + O, we obtain that uy X 4 ;E(M¢X) for all A. Since x € Xe, 1lim u.,x = x.

inclusion is immediate.

We denote by M(A, X), or simply M(X), the class of all multipliers of X. Then
M(X) also becomes a Banach A-module under the module multiplication defined by
(aT)b = a(Tb). For each x ¢ X, the mapping T of A into X defined by rx(a) = ax is a

multiplier of X, so that 1 becomes a module homomorphism of X into M(X). Also it can
be easily observed that

TAC X, and TM‘tC M¢X (2.3)

for all T € M(X) and ¢ € ®A’ where the bar denotes the norm closure.

Now, for each ¢e_oA, let X¢ = X/X¢ be the quotient of X by X¢. So X° becomes a

Banach A-module under the natural module structure and the quotient norm. For each

x € X, let x(¢) = x + X¢ be the natural image of x in Xo. A vector field on OA is a

function ¢ defined on ¢, with o(¢) € X¢ for each ¢ & ¢,. Of course, Q(x € X) is a

vector field on OA. Denote by IIXo the class of all vector fields on @A and so it

becomes an A-module under the module multiplication defined by (ac)(¢) = 2(¢)0(¢L
where a denotes the Gelfand transform of a A. Define

anO = lo M ol = sup |]o®)|| < + =
be o,
Then nbx¢ beomes a Banach A-module under the norm ’i ||° and X = {;: x € X} C‘be¢.
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With the above notations, we have the following representation theorem of
nultipliers. A
THEOREM 2.1. (1) If T M(X), then there existsAa unique vector field T on ¢A such
that Ta = aT for all a ¢ A. (ii) The mapping T » T is a continuous module
isomorphism of M(X) into nbx¢.

PROOF. Let T& M(X), a ¢ A and ¢ € QA' Since e¢aux - 3(¢)e¢uA € M0 for all A, it

A
follows from (2.3) that T(e¢auA) - a(@)T(eQuA)E; M¢X for all A. Hence, after taking

A —
the limit with respect to A, we obtain T(e¢a) - a(¢)Te4’€ M¢X. Note also that

Ta & Xe from (2.3). Then there exist c ¢ A and y € X such that Ta = cy, so that

Ta - T(e¢a) = Ta - e@Ta =(c-e c)y € M¢X. We therefore have

Ta - ;(cp)'re¢ = (Ta - Te a) + (Te¢a - a(o)Te ) € M¢X ¢ MX C sp(M X)C: X¢.
~ A

Setting T(¢) = Te (@) we obtain that Ta(¢) = a(@)T(¢) = (aT)(¢). In other words, %h
= a% for all ae A. If o ¢ NX, such that Ta = ao for a11 a € A, then

»Tk$) = Te (¢) =e (¢)c(¢) = o(@) for all ¢ ®,, so that T = g. This proves (i). It
is 1mmed{ate from (i) that T+ T is a continuous module homomorphism of M(X) into
gix@. To show that this mapping is injective, let T € M(X) with % = 0. Then

TA = AT = {0} from (i), so TA rﬁ\ . Also TAC ‘e from (2.3). Therefore, by

2) and our assumption (2.1), A

ac N xnx®= () spM.x) = {0}.
sce, © veo, ?

We thus obtain T = 0, and (ii) is proved.

A Banach left A-module X is said to be order-free if for
every x € X with x # 0 there exists a ¢ A with
ax # 0.

COROLLARY 2.2. Let x e X. If either x € Xe or X is order-free, then Q =0
implies x = 0.

PROOF. Note first that

5; = ax, a€ A, x¢ X. (2.4)

In fact, for each ¢ € OA’

ax - a(¢)x = (a - a(¢)e X - a(8)(1 - e p) X € MX - (e ) xC x%.
This {implies (2.4). Now let x € X with x = 0. By the above theorem and (2.4), we
have

r (o) =% (0)1 (¢) = (e T )(¢) = (¢) =e X(¢) = e (¢)X(¢) = x(@)

for all °€'°A’ so that rx = Q. Then 4; = 0 and hence Ax = {0}. Accordingly, if
either x ¢ Xe or X 1s order—free, then x = 0.
3. EXTENSION OF HELSON-EDWARDS THEOREM.

We give a characterization of multipliers of an order-free Banach A-module which
is similar to [2, Theorem 1.2.4] and Liu, van Rooij, and Wang [3, Lemma 1.3].
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COROLLARY 3.1. Let X be order-free and T a mapping of A into X. Then the
following conditions are equivalent.
(1) Te M(X).
(ii) T is linear and continuous; TM¢C‘X¢ for every ¢ ¢ @
(iii) T(ab) = aTb for all a,b < A

PROOF. (i) ==> (ii) follows immediately from (2.3). (ii) ==> (iii). Let
a,bé& A and ¢ ¢ . Since abu - a(¢)bu é M¢ for all A, it follows from (ii) that
T(abu ) - a(¢)T(bu ) TM¢ x¢ for all X. Hence, after taking the limit with respect
to A, we obtain T(ab) - a(¢)Tb ¢ X¢ Then, by (2.4), T(ab) = afB aTb, so that
T(ab) = aTb by Corollary 2.2.

(iii) ==> (i). To show that T is linear, let a,b« A and a,B scalars. Then

A*

cT(aa + Bb)

T(aac - Bbc) = (aa + Bb)Tc = aaTc + BbTc

acTa + BcTb = c(aTa + BTb)

for all c¢ A. Since X is order-free, T(aa + Bb) = aTa + BTb.
To show the continuity of T, let lim an =a¢ A and 1lim Tan =x¢ X Then

bTa = aTb = lim anTb = lim b’l‘a‘_l = bx

for all be< A. So Ta = x and hence T is continuous by the closed graph theorem.

Let @ = {?: Te M(X)}. The following result is an extension of the Helson-
Edwards theorem for the group algebra of a locally compact Abelian group (see Rudin
[4, Theorem 3.8.1]). . ~

THEOREM 3.2. Let o¢C IIX,. Then, Ao C M(X) if and only if ¢ e M(X).

PROOF. Note first that T, = )? for all x¢ X as observed in the proof of Corollary
2.2, If TE M(X) with T = g, then, by Theorem 2.1, ag = aT = Ta = ‘tT C M(}) for all
a A.

Suppose conversely that AcC ﬁ(x\) Let a¢ A. By the Cohen-Hewitt factorization
theorem, a can be wrttten as a = bc for some b, c € A. Choose S ¢ M(X) with co = /S\.
Then, ag = bco = bg = Sb € X from (2. 3). Hence, by Corollary 2.2, there is a unique
element of X, say Ta, such that ag = Ta. If a,b are arbitrary elements of A, then

@ = abo = a(bo) = aTb = aTb by (2.4). Since TA Xe, T(ab) = aTb by Corollary

3.1. Note that Xy is an order-free Banach A-module. Then, by Corollary 3.1,

T< M(A, Xe)C M(A, X) = M(X). Consequently, ¢ = T 4 M(‘;) and the theorem is proved.
We will observe that Theorem 3.2 can be viewed as a generalization of Liu-Rooij-

Wang's result [3, Theorem 2.3].

Let G be a compact Abelian group and X a Banach I! (G)-module. Let X ,=17X for each 1G
the dual group of G. Also denote by nX_ the class of all mappings p of G into X such that p(y) €
X, for every yeG. Set ¢.(f)=f(7) (v€G,f e L)G)), where | is the Fourier transform of f. Note
that for each y€ G, X 27— (1-9)X and X 7 is isometrically module-isomorphic to X,. Also since
$p G = L}(G), it follows that
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0
N x Y= (o}

Yeos
- A
and hence X satisfies (2.1). For each x € X, denote by x the restriction of Tx to G

and set X = (;?: X< X}e

COROLLARY tLiu-Rooij-Wang) pC an can be extended to a multiplier of X if and
only if fp - X for every f¢ L (G)

PROOF. Clearly f(Y)Y Y*f (ye€ é; fe Ll(G)). So if p =T 8 for some
T ¢ M(X), then fp = Tf X for every f c Ll(G). Suppose conversely that p ¢ IX_ and

A ~ Y
fp - X for every f € L (G) Then for each f € Ll(G), choose fo_X with fp = Xge
A
set o(¢Y) = o(Y)(¢Y) for each y¢ G. We then have
. A A\ ~
f = f( =
( 0)(¢Y) f\Y)p(Y)(¢Y) (xe () (¢Y)
_ N - N )
= Yxf(oY) xf(¢Y
l A [N A
for all y# G and f ¢ L (G). Thus fo = x_¢ X for all f ¢ L (G) and hence o = T for

£
some T € M(X) from Theorem 3.2. Therefore,
p/@)(q» ) = s = (D) = 'r;wY),

so that p(y) - Ty € X Yo (1 - y)X for all y¢ 6: But p(y), Ty ¢ yX and so
p(Yy) - Ty ¢ YX for all vy ( 8. Consequently, p = T|a.
4. LOCAL PROPERTIES OF MULTIPLIERS.

We will consider local properties of multipliers. To do this, we introduce the
following notation which is exactly similar to one given in Rickart [5, 2.7.13].

DEFINITION. Let o ¢ 1'[X¢ and EC.HX¢. Then o is said to belong to I near a
point ¢ ¢ OA (or at infinity) provided there exists a neighborhood V of ¢ (or
infinity) and an element o' T such that c'V = o'IV. If o belongs to near every

point of ¢, and at infinity, then o is said to belong locally to I.

A
The following result is similar to one given in [5, 2.7.16] and we refer to the
proof of one.

THEOREM 4.1. Assume A to be completely regular and let L be a submodule of HX¢.
If o ¢ ]'[X¢ belongs locally to I, then o€ I.

PROOF. Since o belongs to L at infinity, there exists an open set U0 of QA with
compact complement K and coc,z with OO'UO = uIUO. Also since o belongs to I near
every point of K, there exists a finite open covering {Ul""’un} of K and a finite
subset {ol,...,cn} of I with oi'U1 = c’Ui (41 = 1l,ee.,n). Note that A admits a partion
of the identity (cf. [5, Theorem 2.7.12]). Then there exists €reee,ep A such that

e=e + .o te, is an identity for A modulo ker X and eie'ker(oA - Ui)

(i =1,.e., n), where ker K denotes the kernel of K. Set
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"= - + + .00 + e .
o (1 e)oo €9, 2%

Then o' is obviously in Z. We further assert o' = o. In fact, if ¢ ¢ UO’ then we
have
A N
a'(g) = (L —e(p))o(¢) + T e;(#)o (¢)
pe U,
i
N A
=(l -e(9) + I ei(¢))o\¢)
LS Ui

= 0(¢).
A
If ¢ - K, then e(¢) =1 and {i: 1 <i <n, ¢ ¢ Ui} # f, so that

a'(¢) = I in)oi(«a) = 3 ’e‘iw)o(q,)
$ C Ui MU1

= e(¢)o(9) = a(¢).
Consequently, o' = o and the theorem is proved.

Because M(X) is a submodule of HX¢, we obtain the following local property of
multipliers from the preceding theorem.

COROLLARY 4.2. Assume A to be completely regular. If o¢ IIX¢ belongs locally to
M(X), then o ¢ M(X).

Let A contain local identities (cf. [5, 3.6.11]) and T € M(X). The closure
of {$¢ ¢A

is compact, then there exists a unique X X with T = T . 1In fact, by [5, Theorem

T(¢) # 0} is called the support of T and is denoted by supp T. If supp T

3.6.13], A has an identity for A modulo ker(supp T), say e. Set x = Te. So the

desired result follows from Theorem 2.1 and Corollary 2.2.

Similarly, we obtain that for each compact set K of QA’ there exists x € X with
'r|1( x|K.
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