AN EXTENSION OF HELSON-EDWARDS THEOREM TO BANACH MODULES

SIN-EI TAKAHASI

Yamagata University Department of Basic Technology Faculty of Engineering Yonezawa 992 JAPAN

(Received September 23, 1988)

ABSTRACT. An extension of the Helson-Edwards theorem for the group algebras to Banach modules over commutative Banach algebras is given. This extension can be viewed as a generalization of Liu-Rooij-Wang's result for Banach modules over the group algebras.

KEY WORDS AND PHRASES. Multiplier, Banach modules, bounded approximate identity, compact abelian group, completely regular.

1. INTRODUCTION.

Let A be a commutative complex Banach algebra with a bounded approximate identity $\{u_{\lambda}\}$ of norm β and denote by Φ_{A} the class of all nonzero homomorphisms of A into the field of complex numbers. The space Φ_{A} , with the Gelfand topology, is called the carrier space of A. Let X be a Banach left A-module. A continuous module homomorphism of A into X is called a multiplier of X. We introduce a family $\{X_{\phi}: \phi \in \Phi_{A}\}$ of Banach A-modules such that any multiplier T of X can be represented as a function T on Φ_{A} with $T(\phi) \in X_{\phi}$ for each $\phi \in \Phi_{A}$. In this setting we give an extension of the Helson-Edwards theorem for the group algebras to Banach modules. We also observe that this extension can be viewed as a generalization of Liu-Rooij-Wang's result for Banach modules over the group algebras. We further consider a local property of multipliers when A is completely regular.

2. REPRESENTATION THEOREM OF MULTIPLIERS.

For each ϕ ϵ $\Phi_A,$ let $M_{\dot{\varphi}}$ denote the maximal modular ideal of A corresponding to ϕ and define

$$X^{\phi} = \overline{sp} \{ \mathbb{M}_{\phi} X + (1 - e_{\phi}) X \},\$$

where \overline{sp} denotes the closed linear span and e_{ϕ} is an element of A with $\phi(e_{\phi}) = 1$. Note that X^{ϕ} does not depend on the choise of e_{ϕ} . Throughout the remainder of this note we will assume

$$\bigcap_{\phi \in \phi_{A}} \overline{sp}(M_{\phi}) = \{0\}.$$
 (2.1)

In the case of X = A, the condition (2.1) is equivalent to the semisimplicity of A. The space $\overline{sp}(AX)$ is called the essential part of X and is denoted by X_e . Since A has a bounded approximate identity, it follows that X_e = AX from the Cohen-Hewitt

factorization theorem (see Doran-Wichman [1]). We also have

$$X^{\phi} \quad X_{e} = \overline{sp}(M_{\phi}X) \tag{2.2}$$

for all $\phi \in \Phi_A$. In fact, let $\phi \in \Phi_A$, $x \in X^{\phi} = X_e$ and $\varepsilon > 0$. Since $x \in X^{\phi}$, there exist $a_1, \dots, a_n = M_{\phi}$ and x_1, \dots, x_n , y = X such that

$$\left|\left|\mathbf{x} - \sum_{i=1}^{n} \mathbf{a}_{i}\mathbf{x}_{i} - (1 - \mathbf{e}_{\phi})\mathbf{y}\right|\right| < \epsilon/\beta$$

Therefore for each λ , we have

$$\left|\left|u_{\lambda}^{\mathbf{x}}-\left(\sum_{\mathbf{i}=1}^{n}u_{\lambda}^{\mathbf{a}}\mathbf{x}_{\mathbf{i}}^{\mathbf{x}}+\left(u_{\lambda}^{\mathbf{-}}u_{\lambda}^{\mathbf{e}}\mathbf{\phi}\right)\mathbf{y}\right)\right|\right|<\varepsilon.$$

Letting $\varepsilon + 0$, we obtain that $u_{\lambda} x \in \overline{sp}(M_{\phi} X)$ for all λ . Since $x \in X_e$, lim $u_{\lambda} x = x$. Consequently, we have that $x \in \overline{sp}(M_{\phi} X)$ and hence $X^{\phi} \cap X_e \subset \overline{sp}(M_{\phi} X)$. The reverse inclusion is immediate.

We denote by M(A, X), or simply M(X), the class of all multipliers of X. Then M(X) also becomes a Banach A-module under the module multiplication defined by (aT)b = a(Tb). For each x ε X, the mapping τ_x of A into X defined by $\tau_x(a) = ax$ is a multiplier of X, so that τ becomes a module homomorphism of X into M(X). Also it can be easily observed that

$$TA \subset X_e \text{ and } TM_{\phi} \subset \overline{M_{\phi}X}$$
 (2.3)

for all $T \in M(X)$ and $\phi \in \Phi_A$, where the bar denotes the norm closure.

Now, for each $\phi \in \Phi_A$, let $X_{\phi} = X/X^{\phi}$ be the quotient of X by X^{ϕ} . So X_{ϕ} becomes a Banach A-module under the natural module structure and the quotient norm. For each $x \in X$, let $x(\phi) = x + X^{\phi}$ be the natural image of x in X^{ϕ} . A vector field on Φ_A is a function σ defined on Φ_A with $\sigma(\phi) \in X_{\phi}$ for each $\phi \in \Phi_A^{\bullet}$. Of course, $\hat{x}(x \in X)$ is a vector field on Φ_A^{\bullet} . Denote by ΠX_{ϕ} the class of all vector fields on Φ_A and so it becomes an A-module under the module multiplication defined by $(a\sigma)(\phi) = \hat{a}(\phi)\sigma(\phi)$, where a denotes the Gelfand transform of a A. Define

$$\pi^{b} X_{\phi} = \{ \sigma \quad \pi X_{\phi} \colon ||\sigma||_{\infty} = \sup_{\phi \in \Phi_{A}} ||\sigma(\phi)|| < +\infty \}.$$

Then $\Pi^{b}X_{\phi}$ becomes a Banach A-module under the norm $\|\|\|_{\infty}$ and $X = \{\hat{x}: x \in X\} \subset \Pi^{b}X_{\phi}$.

With the above notations, we have the following representation theorem of multipliers.

THEOREM 2.1. (i) If T M(X), then there exists a unique vector field \overline{T} on ϕ_A such that $\overline{Ta} = a\overline{T}$ for all $a \in A$. (ii) The mapping $T + \overline{T}$ is a continuous module isomorphism of M(X) into $\pi^b X_A$.

PROOF. Let $T \in M(X)$, $a \in A$ and $\phi \in \Phi_A$. Since $e_{\phi}au_{\lambda} - \hat{a}(\phi)e_{\phi}u_{\lambda} \in M_{\phi}$ for all λ , it follows from (2.3) that $T(e_{\phi}au_{\lambda}) - \hat{a}(\phi)T(e_{\phi}u_{\lambda}) \in \overline{M_{\phi}X}$ for all λ . Hence, after taking the limit with respect to λ , we obtain $T(e_{\phi}a) - \hat{a}(\phi)Te_{\phi} \in \overline{M_{\phi}X}$. Note also that $Ta \in X_{\phi}$ from (2.3). Then there exist $c \in A$ and $y \in X$ such that Ta = cy, so that

Ta - T(e, a) = Ta - e, Ta = (c - e, c)y
$$\in M_{\phi}X$$
. We therefore have
Ta - $\hat{a}(\phi)Te_{\phi} = (Ta - Te_{\phi}a) + (Te_{\phi}a - \hat{a}(\phi)Te_{\phi}) \in M_{\phi}X + \overline{M_{\phi}X} \subset \overline{sp}(M_{\phi}X) \subset X^{\phi}$.
Setting $T(\phi) = \hat{Te}_{\phi}(\phi)$, we obtain that $\hat{Ta}(\phi) = \hat{a}(\phi)\hat{T}(\phi) = (\hat{aT})(\phi)$. In other words, $\hat{Ta} = \hat{aT}$ for all $a \in A$. If $\sigma \in \Pi X$, such that $\hat{Ta} = a\sigma$ for all $a \in A$, then
 $\hat{T}(\phi) = \hat{Te}_{\phi}(\phi) = \hat{e}_{\phi}(\phi)\sigma(\phi) = \sigma(\phi)$ for all $\phi = \Phi_A$, so that $\hat{T} = \sigma$. This proves (i). It
is immediate from (i) that $T + \hat{T}$ is a continuous module homomorphism of M(X) into
 $\Pi^{b}X_{\bullet}$. To show that this mapping is injective, let $T \in M(X)$ with $\hat{T} = 0$. Then

 $\Lambda = AT = \{0\}$ from (i), so TA $\bigcap_{e} A$ X^{ϕ} . Also TAC X from (2.3). Therefore, by (2.2) and our assumption (2.1),

TAC
$$\bigcap_{\phi \in \Phi_{A}} X_{e} \cap X^{\phi} = \bigcap_{\phi \in \Phi_{A}} \overline{sp}(M_{\phi}X) = \{0\}.$$

We thus obtain T = 0, and (ii) is proved.

A Banach left A-module X is said to be order-free if for every $x \in X$ with $x \neq 0$ there exists $a \in A$ with $ax \neq 0$.

aabaa abaa a

COROLLARY 2.2. Let $x \in X$. If either $x \in X_e$ or X is order-free, then $\hat{x} = 0$ implies x = 0.

PROOF. Note first that

$$ax = ax$$
, $a \in A$, $x \in X$. (2.4)

In fact, for each $\phi \in \Phi_A$,

ax $-\hat{a}(\phi)x = (a - \hat{a}(\phi)e_{\phi})x - \hat{a}(\phi)(1 - e_{\phi}) x \in M_{\phi}X - (1 - e_{\phi}) X \subset X^{\phi}$. This implies (2.4). Now let $x \in X$ with $\hat{x} = 0$. By the above theorem and (2.4), we have

$$\hat{\tau}_{x}(\phi) = \hat{e}_{\phi}(\phi)\hat{\tau}_{x}(\phi) = (e_{\phi}\hat{\tau}_{x})(\phi) = \hat{\tau}_{x}e_{\phi}(\phi) = \hat{e}_{\phi}\hat{x}(\phi) = \hat{e}_{\phi}(\phi)\hat{x}(\phi) = \hat{x}(\phi)$$

for all $\phi \in \phi_A$, so that $\tau_x = \hat{x}$. Then $\tau_x = 0$ and hence $Ax = \{0\}$. Accordingly, if either x $\in X_e$ or X is order-free, then x = 0.

3. EXTENSION OF HELSON-EDWARDS THEOREM.

We give a characterization of multipliers of an order-free Banach A-module which is similar to [2, Theorem 1.2.4] and Liu, van Rooij, and Wang [3, Lemma 1.3]. COROLLARY 3.1. Let X be order-free and T a mapping of A into X. Then the following conditions are equivalent.

(i) $T \in M(X)$.

(ii) T is linear and continuous; $TM_{\phi} \subset X^{\phi}$ for every $\phi \in \phi_{A}$.

(iii) T(ab) = aTb for all $a, b \in A$.

PROOF. (i) ==> (ii) follows immediately from (2.3). (ii) ==> (iii). Let a,b \in A and $\phi \in \Phi_A$. Since $abu_{\lambda} - \hat{a}(\phi)bu_{\lambda} \in M_{\phi}$ for all λ , it follows from (ii) that $T(abu_{\lambda}) - \hat{a}(\phi)T(bu_{\lambda}) - TM_{\phi} \quad X^{\phi}$ for all λ . Hence, after taking the limit with respect to λ , we obtain $T(ab) - \hat{a}(\phi)Tb \in X^{\phi}$. Then, by (2.4), T(ab) = aTb = aTb, so that T(ab) = aTb by Corollary 2.2.

(iii) ==> (i). To show that T is linear, let a, b \leftarrow A and α,β scalars. Then

 $cT(\alpha a + \beta b) = T(\alpha a c - \beta b c) = (\alpha a + \beta b)Tc = \alpha aTc + \beta bTc$

= $\alpha cTa + \beta cTb = c(\alpha Ta + \beta Tb)$

for all $c \in A$. Since X is order-free, $T(\alpha a + \beta b) = \alpha T a + \beta T b$.

To show the continuity of T, let $\lim a_n = a \in A$ and $\lim Ta_n = x \in X$. Then

$$bTa = aTb = \lim a_nTb = \lim bTa_n = b$$

for all b \in A. So Ta = x and hence T is continuous by the closed graph theorem.

Let $M(A) = \{\hat{T}: T \in M(X)\}$. The following result is an extension of the Helson-Edwards theorem for the group algebra of a locally compact Abelian group (see Rudin [4, Theorem 3.8.1]).

THEOREM 3.2. Let $\sigma \in \Pi X$. Then, $A\sigma \subset M(X)$ if and only if $\sigma \in M(X)$. PROOF. Note first that $\hat{\tau}_{x} = \hat{x}$ for all $x \in X$ as observed in the proof of Corollary 2.2. If $T \in M(X)$ with $\hat{T} = \sigma$, then, by Theorem 2.1, $a\sigma = a\hat{T} = \hat{T}a = \hat{\tau}_{Ta} \in M(X)$ for all a A.

Suppose conversely that $A \sigma \subset \widehat{M(X)}$. Let $a \in A$. By the Cohen-Hewitt factorization theorem, a can be written as a = bc for some $b, c \in A$. Choose $S \in M(X)$ with $c\sigma = \hat{S}$. Then, $a\sigma = bc\sigma = b\hat{S} = \hat{Sb} \in \hat{X}_e$ from (2.3). Hence, by Corollary 2.2, there is a unique element of X_e , say Ta, such that $a\sigma = \hat{Ta}$. If a, b are arbitrary elements of A, then $\widehat{T(ab)} = ab\sigma = a(b\sigma) = a\hat{Tb} = \hat{a}\hat{Tb}$ by (2.4). Since TA X_e , T(ab) = aTb by Corollary 3.1. Note that X_e is an order-free Banach A-module. Then, by Corollary 3.1, $T \in M(A, X_e) \subset M(A, X) = M(X)$. Consequently, $\sigma = \hat{T} \in M(X)$ and the theorem is proved.

We will observe that Theorem 3.2 can be viewed as a generalization of Liu-Rooij-Wang's result [3, Theorem 2.3].

Let G be a compact Abelian group and X a Banach L^1 (G)-module. Let $X_{\gamma} = \gamma X$ for each $\gamma \hat{G}$ the dual group of G. Also denote by πX_{γ} the class of all mappings ρ of \hat{G} into X such that $\rho(\gamma) \in X_{\gamma}$ for every $\gamma \in G$. Set $\phi_{\gamma}(f) = \hat{f}(\gamma)$ ($\gamma \in \hat{G}, f \in L^1(G)$), where \hat{f} is the Fourier transform of f. Note that for each $\gamma \in \hat{G}, X \stackrel{\phi}{=} (1 - \gamma)X$ and $X \stackrel{\phi\gamma}{=}$ is isometrically module-isomorphic to X_{γ} . Also since $\overline{sp} \ \hat{G} = L^1(G)$, it follows that

$$\bigcap_{\gamma \in G} x^{\phi_{\gamma}} = \{0\}$$

and hence X satisfies (2.1). For each x ε X, denote by \tilde{x} the restriction of τ_x to G and set $\tilde{X} = {\tilde{x}: x \in X}$.

COROLLARY (Liu-Rooij-Wang). $\rho \in \Pi X_{\gamma}$ can be extended to a multiplier of X if and only if $\hat{f}\rho \in \tilde{X}$ for every $f \in L^{1}(G)$.

PROOF. Clearly $\hat{f}(\gamma)\gamma = \gamma \star f(\gamma \in \hat{G}, f \in L^{1}(G))$. So if $\rho = T | \hat{G}$ for some $T \in M(X)$, then $\hat{f}\rho = \hat{T}f \in \tilde{X}$ for every $f \in L^{1}(G)$. Suppose conversely that $\rho \in IX_{\gamma}$ and $\hat{f}\rho \in \tilde{X}$ for every $f \in L^{1}(G)$. Then for each $f \in L^{1}(G)$, choose $x_{f} \in X$ with $\hat{f}\rho = \tilde{x}_{f}$. set $\sigma(\phi_{\gamma}) = \rho(\gamma)(\phi_{\gamma})$ for each $\gamma \in \hat{G}$. We then have

$$(f\sigma)(\phi_{\gamma}) = \widehat{f}(\gamma)\widehat{\rho(\gamma)}(\phi_{\gamma}) = (\widetilde{x}_{f}(\gamma)) (\phi_{\gamma})$$
$$= \widehat{\gamma x}_{f}(\phi_{\gamma}) = \widehat{x}_{f}(\phi_{\gamma})$$

for all $\gamma \in G$ and $f \in L^1(G)$. Thus $f\sigma = x_f \in X$ for all $f \in L^1(G)$ and hence $\sigma = T$ for some $T \in M(X)$ from Theorem 3.2. Therefore,

$$\rho(\gamma)(\phi_{\gamma}) = \dot{T}(\phi_{\gamma}) = (\gamma \dot{T})(\phi_{\gamma}) = \dot{T}\gamma(\phi_{\gamma}),$$

so that $\rho(\gamma) - T\gamma \in X^{\Psi \gamma} = (1 - \gamma)X$ for all $\gamma \in \widehat{G}$. But $\rho(\gamma)$, $T\gamma \in \gamma X$ and so $\rho(\gamma) - T\gamma \in \gamma X$ for all $\gamma \in \widehat{G}$. Consequently, $\rho = T \mid \widehat{G}$. 4. LOCAL PROPERTIES OF MULTIPLIERS.

We will consider local properties of multipliers. To do this, we introduce the following notation which is exactly similar to one given in Rickart [5, 2.7.13].

DEFINITION. Let $\sigma \in \Pi X_{\phi}$ and $\Sigma \subset \Pi X_{\phi}$. Then σ is said to belong to Σ near a point $\phi \in \Phi_A$ (or at infinity) provided there exists a neighborhood V of ϕ (or infinity) and an element σ' Σ such that $\sigma | V = \sigma' | V$. If σ belongs to near every point of Φ_A and at infinity, then σ is said to belong locally to Σ .

The following result is similar to one given in [5, 2.7.16] and we refer to the proof of one.

THEOREM 4.1. Assume A to be completely regular and let Σ be a submodule of ΠX_{ϕ} . If $\sigma \in \Pi X_{\phi}$ belongs locally to Σ , then $\sigma \in \Sigma$.

PROOF. Since σ belongs to Σ at infinity, there exists an open set U_0 of Φ_A with compact complement K and $\sigma_0 \in \Sigma$ with $\sigma_0 | U_0 = \sigma | U_0$. Also since σ belongs to Σ near every point of K, there exists a finite open covering $\{U_1, \ldots, U_n\}$ of K and a finite subset $\{\sigma_1, \ldots, \sigma_n\}$ of Σ with $\sigma_i | U_i = \sigma | U_i$ ($i = 1, \ldots, n$). Note that A admits a partion of the identity (cf. [5, Theorem 2.7.12]). Then there exists e_1, \ldots, e_n A such that $e = e_1 + \ldots + e_n$ is an identity for A modulo ker K and $e_i \in \ker(\Phi_A - U_i)$ ($i = 1, \ldots, n$), where ker K denotes the kernel of K. Set

$$\sigma' = (1 - e)\sigma_0 + e_1\sigma_1 + \dots + e_n\sigma_n$$

Then σ' is obviously in Σ . We further assert $\sigma' = \sigma$. In fact, if $\phi \in U_0$, then we have

$$\sigma'(\phi) = (1 - \hat{e}(\phi))\sigma(\phi) + \sum_{\substack{\phi \in U_i \\ \phi \in U_i}} \hat{e}_i(\phi)\sigma(\phi)$$
$$= (1 - \hat{e}(\phi) + \sum_{\substack{\phi \in U_i \\ \phi \in U_i}} \hat{e}_i(\phi))\sigma(\phi)$$
$$= \sigma(\phi).$$

If $\phi \in K$, then $\stackrel{\wedge}{e}(\phi) = 1$ and $\{i: 1 \leq i \leq n, \phi \in U_i\} \neq \emptyset$, so that

$$\sigma'(\phi) = \Sigma \stackrel{\circ}{e}_{i}(\phi)\sigma_{i}(\phi) = \Sigma \stackrel{\circ}{e}_{i}(\phi)\sigma(\phi)$$

$$\phi \subset U_{i} \qquad \phi \in U_{i}$$

$$= \stackrel{\circ}{e}(\phi)\sigma(\phi) = \sigma(\phi).$$

Consequently, $\sigma' = \sigma$ and the theorem is proved.

Because M(X) is a submodule of $\Pi X_{\varphi},$ we obtain the following local property of multipliers from the preceding theorem.

COROLLARY 4.2. Assume A to be completely regular. If $\sigma \in \Pi X_{\phi}$ belongs locally to M(X), then $\sigma \in M(X)$.

Let A contain local identities (cf. [5, 3.6.11]) and $T \in M(X)$. The closure of $\{\phi \in \phi_A: T(\phi) \neq 0\}$ is called the support of T and is denoted by supp T. If supp T is compact, then there exists a unique $x \in X_e$ with $T = \tau_x$. In fact, by [5, Theorem 3.6.13], A has an identity for A modulo ker(supp T), say e. Set x = Te. So the desired result follows from Theorem 2.1 and Corollary 2.2.

Similarly, we obtain that for each compact set K of Φ_A , there exists x ϵ X with $T \mid K = x \mid K$.

REFERENCES

- DORAN, R.S. and WICHMANN, J., <u>Approximate Identities and Factorization in Banach</u> <u>Modules</u>, Lecture Notes in Math. 768, Springer-Verlag, New York-Heidelberg, 1979.
- LARSEN, R., <u>An Introduction to the Theorey of Multipliers</u>, Springer-Verlag, New York-Heidelberg, 1971.
- LIU, T.S., VAN ROOIJ, A.C.M. and WANG, J.K., A Generalized Fourier Transformation for L₁(G)-modules, <u>J. Austral. Math. Soc.</u> (Series A) <u>36</u> (1984), 365-377.
- RUDIN, W., Fourier Analysis on Groups, New York, N.Y.: Interscience Publishers, Inc., 1962.
- RICKART, C.E., <u>General Theorey of Banach Algebras</u>, Van Nostrand, Princeton, N.J., 1960.