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ABSTRACT. An extension of the Helson-Edwards theorem for the group algebras to Banach

modules over commutative Banach algebras is given. This extension can be viewed as a

generalization of Liu-Rooij-Wang’s result for Banach modules over the group algebras.

KEY WORDS AND PHRASES. Multiplier, Banach modules, bounded approximate identity,

compact abelian group, completely regular.

I. INTRODUCTION.

Let A be a commutative complex Banach algebra with a bounded approximate identity

{u} of norm and denote by A the class of all nonzero homomorphisms of A into the

field of complex numbers. The space A’ with the Gelfand topology, is called the

carrier space of A. Let X be a Banach left A-module. A continuous module homomorphism

of A into X is called a multiplier of X. We introduce a family {X: e A of Banach

A-modules such that any multiplier T of X can be represented as a function T on A
with T() e X for each e A" In this setting we give an extension of the Helson-

Edwards theorem for the group algebras to Banach modules. We also observe that this

extension can be viewed as a generalization of Liu-RooiJ-Wang’s result for Banach

modules over the group algebras. We further consider a local property of multipliers

when A is completely regular.

2. REPRESENTATION THEOREM OF MULTIPLIERS.

For each A’ let M denote the maximal modular ideal of A corresponding to

and define

x p{M,X + (, e,lX},

where sp denotes the closed linear span and e is an element of A with (e) I.

Note that X# does not depend on the choise of e.
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Throughout the remainder of this note we will assume

( s(M) {0}. (2.1)
A

In the case of X A, the condition (2.1) is equivalent to the semlslmpliclty of A.

The space p(AX) is called the essential part of X and is denoted by Xe. Since A has

a bounded approximate identity, it follows that X AX from the Cohen-Hewitt
e

factorization theorem (see Doran-Wlchman [I]). We also have

X X s-(M X) (2.2)
e

for all A" In fact let # %A’ x X# X and e > O. Since x X # there
e

exist a l,...,a M and x x
n

y X such that

jx- I -(- >yJj < /-
i=l

Therefore for each I, we have

n

l]UxX [ uxalxi + (u% uxe)y)jJ < e.

Letting e + 0, we obtain that ulx sp(M#X) for all I. Since x Xe, llm ulx x.

Consequently, we have that x c sp(M#X) and hence XVOXeC sp(MX). The reverse

inclusion is immediate.

We denote by M(A, X), or simply M(X), the class of all multipliers of X. Then

MkX) also becomes a Banach A-module under the module multiplication defined by

[aT)b a(Tb). For each x X, the mapping of A into X defined by (a) ax is a

multiplier of X, so that becomes a module homomorphism of X into M(X). Also it can

be easily observed that

TA Xe and TM MX (2.3)

for all T M(X) and

_
A’ where the bar denotes the norm closure.

Now, for each #A’ let X# X/X be the quotient of X by X. So X# becomes a

Banach A-module under the natural module structure and the quotient norm. For each

x X, let x() x + X be the natural image of x in X. A vector field on A is a

function o defined on A with o()E X for each A" Of course, (x X) is a

vector field on A" Denote by HX the class of all vector fields on

becomes an A-module under the module multiplication defined by (ao)() ()o(),
where a denotes the Gelfand transform of a A. Define

A
bx beomes a Banach A-module under the norm j[ 11. and X {: xThen
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Wih the above notations, we have the following representation theorem of

multipliers.

THEOREM 2.1. (i) If T M(X), then there exists a unique vector field T on A such

that Ta aT for all a

_
A. (li) The mapping T T is a continuous module

isomorphism of MiX) into bx.
PROOF. Let T M(X), a A and A" Since eauk ()euk 6 M for all k, it

follows from (2.3) that T(eauk) -a()T(euk) MX for all k. Hence, after taking

the limit with respect to , we obtain T(ea) a()TeG_ MX. Note also that

Ta ( X from (2.3). Then there exist c A and y X such that Ta cy, so that
e

Ta- T(ea) Ta -eTa (c -ec)y 6_ MX. We therefore have

ra a()Te (Ta Tea) + (Tea -()re) MX + MX (MX) X

Setting T() Te(), we obtain that () a()T() (aT)(). In other words, Ta

aT for all a A. If o X such that Ta ao for all a6 A, then

,Ti$) re() =()o() o() for all A’ so that T o. This proves (i). It

is immediate from (i) that T T is a continuous module homomorphism of M(X) into

qbx To show that this mapping is inJectlve, let T M(X) with T O. Then

TA AT [0} from (i), so TA
A

X" Also TA Xe from (2.3). Therefore, by

k2.2) and our assumption (2.1),

TA ( Xe(X -(MX) {0}.

A C- A
We thus obtain T O, and (li) is proved.

A Banach left A-module X is said to be order-free if for

every x X with x 0 there exists a A with

ax 0.

COROLLARY 2.2. Let x e X. If either x X or X is order-free, then x 0
e

implies x 0.

PROOF. Note first that

ax ax, a A, x6_ X. (2.4)

In fact, for each e A’
ax 2()x (a ()e)x a()(! e x MX (l-e) XC X #

This implies (2.4). Now let x X with x 0. By the above theorem and (2.4), we

have

x() e,(*lx(*) (e,x)(*) xe,(*) e,x(,) -,(,)x(,)
for all A’ so that x. The. 0 and he.ce {0}. Accordingly,x x
either x e X or X s order-free, then x 0.

e
3. EXTENSION OF HELSON-EDWARDS THEOREM.

We give a characterization of multipliers of an order-free Banach A-module which

is similar to [2, Theorem 1.2.4] and Liu, van RooiJ, and Wang [3, Lemma 1.3].
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COROLLARY 3.1. Let X be order-free and T a mapping of A into X. Then the

fo[lowlng conditions are equivalent.

(i) T6. M(X).

(ii) T is linear and continuous; TMC X for every

_
A"

(lii) T(ab) aTb for all a,b A.

PROOF. (i) ==> (ii) follows immediately from (2.3). (ii) ==> (iii). Let

a,b . A and A" Since abul -’a()bulr-. M for all , it follows from (ii) that

T(abul) -()T(bul),-TM X for all . Hence, after taking the limit with respect

to , we obtain T(ab) ()rb X. Then, by (2.4), T(ab)= a soaTb, that

T(ab) aTb by Corollary 2.2.

(iii) ==> (i). To show that T is linear, let a,b e. A and e,B scalars. Then

cT(aa + Bb) T(aac Bbc) (aa + b)Tc aaTc + bTc

ecTa + BcTb c(aTa + BTb)

for all c A. Since X is order-free, T(0m + Bb) eTa + BTb.

To show the continuity of T, let lira a a A and lira Ta x X. Then
n n

bTa aTb lim anTb lim bTan bx

for all b . So Ta x and hence T is continuous by the closed graph theorem.

Let M(A) {T: T M(X)}. The following result is an extension of the Helson-

Edwards theorem for the group algebra of a locally compact Abelian group (see Rudin

[4, Theorem 3.8. ). ,,, ,
Then, AaC M(X) if and only if M(X).THEOREM 3.2. Let - XPROOF. Note first that x for all x X as observed in the proof of Corollary

2.2. If T(-" M(X) with T a, then, by Theorem 2.1, aa aT Ta Ta(M(X) for all

a A.

Suppose conversely that AoC M(X). Let a A. By the Cohen-Hewitt factorization
A

theorem, a can be written as a bc for some b, c A. Choose S M(X) with co S.

Then, ao bco bS Sb e X from (2.3). Hence, by Corollary 2.2, there is a unique
e

element of Xe, say Ta, such that ao a. If a,b are arbitrary elements of A, then

T(ab aba a(ba) aT Tb by (2.4). Since TA X T(ab) aTb by Corollarye’
3.1. Note that Xe is an order-free Banach A-odule. Then, by Corollary 3.1,

T M(A, X )C M(A, X) M(X). Consequently, T 6 M(X) and the theorem is proved.
e

We will observe that Theorem 3.2 can be viewed as a generalization of Liu-RooiJ-
Wang’s result [3, Theorem 2.3].

Let G be a compact Abelian group and X a Banach/ (G)-module. Let x7 7x for each 7
the dual group of G. Also denote by x the class of all mappings p of into X such that p(7)e

x7 for every 7 G. Set 7(f) ](7) (7 ,f L(G)), where ] is the Fourier transform of ]. Note
that for each 7 e ,x 7= (1- 7)x and x 7 is isometrically module-isomorphic to x. Also since

"s-’ L(G), it follows that
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and hence X satisfies (2 I). For each x e X denote by the restriction of to G

and set {: K< X}.

COROLLARY (Liu-Roo[j-Wang). 0 r EX can be extended to a multiplier of X if and

only if fp X for every f ( LI(G).
PROOF. Clearly f() *f ( G, f (G)). So if 0 T G for some

andT M(X) then fo X for every f . LI(G) Suppose conversely that

fOe X for every f . LI(G). Then or each f LI(G), choose xfE X with f f.
set o(y) O(y)() for each y G. We then have

(fo)(,7) f(y))(#y) (xf(y))

f(,) xf(,T)
for all y:- G and f < LI(G). Thus fo xf 6 X for all f e LI(G) and hence T for

some T e M(X) from eorem 3.2. Therefore,

so that o(T) TT e X (1 T)X for all y ( G. But O(T), T7 t X and so

o(T) TT 6 TX for all < G. Consequently, p TIC.
4. LOCAL PROPERTIES OF LTIPLIERS.

We wilt consider local properties of multipliers. To do this, we introduce the

following notation which is exactly similar to one given in Rfckart [5, 2.7.13].

DEFINITION. Let g< EX# and ECEX#. Then g is said to belong to near a

point A (or at infinity) provided there exists a neighborhood V of # (or

infinity) and an element g’ Z sach that glV ’lV. If belongs to near every

point of A and at infinity, then g Is said to belong locally to .
The following result is similar to one given tn [5, 2.7.16] and we refer to the

proof of one.

THEOREM 4.1. Assume A to be completely regular and let g be a submodule of .
If g s # belongs locally to , then g (.

PROOF. Since g belongs to at infinity, there exists an open set U
0

of #A with

K and gO < with golU0 g]UO. Also since g belongs to nearcompact complement

every point of K, there exists a finite open covering {U1,...,Un} of K and a finite

subset {gl,...,gn} of Z with gilUf glUi (i ,n). Note that A admits a partion

of the identity (of. [5, Theorem 2.7.12]). Then there eists el,...,en A such that

e e + + en ts an identity for A dulo ker K and ei6 ker(A
Ui)

(i 1,..., n), where ker K denotes the kernel of K. Set
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o’ kl -e)o
0

+ elo + + enOn
Then o’ is obv[ously in Z. We further assert o’ o. In fact, [f U0, then we

have

O’) I -e0))o #) + l ei#)o (#)
0 u.

e(,) + Z e
i
(0)

i

If 0 K, then e() and {i: i n, # 4 U.} # O, so that

o’() l ei(#)oi(#) 7. ei()o(
+ U

i e U

e()o())

Consequently, o’ o and the theorem is proved.

Because M(X) is a submodule of NX 0,
we obtain the following local property of

multipliers from the preceding theorem.

COROLLARY 4.2. Assume A to be completely regular. If t X belongs locally to

M(X), then o % M(X).

Let A contain local identities (cf. [5, 3.6.11]) and T 6 M(X). The closure

of {0 6 A: T(0) 0} is called the support of T and is denoted by supp T. If supp T

is compact, then there exists a unique x X with T In fact, by [5, Theorem
e x

3.6.13], A has an identity for A modulo ker(supp T), say e. Set x Te. So the

desired result follows from Theorem 2.1 and Corollary 2.2.

Similarly, we obtain that for each compact set K of A’ there exists x e Xe with
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