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ABSTRACT" If n> 1, let the nth row of an infinite triangular array consist of entries

B n j) -if-k-in n J where 0 _< j _< [1/2n].

We develop some properties of this array, which was discovered by Vieta. In addition, we prove

some irreducibility properties of the family of polynomials

These polynomials, which we call Vieta polynomials, are related to Chebychev polynomials of the

first kind.
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1. INTRODUCTION.
For any n >_ 1, we let the nth row of an infinite left adjusted triangular array consist of the

entries

if j=0

(n -j i-1 if < j <[1/2hi

where Horadam [1] attributes (1.1) to Lucas [2]. The array in question is

(1.1)

(1.2)
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This array was first used by Vieta [3], where we find

2 cos nO Y (-1)’B(n,j)(2 cos O)
3--. 0

(1.3)

The array has also been studied by Lucas [21 who observed (1.2) as well as

+ u" E (- 1)Jn(,,,j)(xu)J(x + u)"- 2
3--0

(1.4)

which is attributed to Lagrange by Ribenboim [4,p. 45],

Lkn Y 1)J(k + 1)B(n j)L. 2

and for odd, Fk" 1)k5(, )F- :
3--0

(1.6)

where L., and F. are respectively the mth Lucas and Fibonacci numbers. Equations (1.5) and (1.6)
readily follow by induction on n. In Hoggatt [5], we find

L _, B(n, j) (1.?)
j-o

which follows directly from (1.5) with k=l, and

B(n, j) B(n 1), j) + B(n 2, j 1), n > 3 and 0 < j _< [1/2n]

where it is assumed that a zero is used whenever a number in the array does not appear.

Equations (1.4), (1.7) and (1.8)illustrate that the [B(n,j)] have properties similar to those of

the binomial coefficients.

In this paper, we develop additional properties associated with this array as well as prove

some irreducibility properties of the family of polynomials

Vn(x _, (_ 1)B(n,j)xn- 2j (1.9)
3-o

which we call Vieta polynomials.

Jacobstahl [6] proved that {V.(x)} is a family of permutable polynomials, that is,

V.,(V.(x))= V.(V,.(x))= V,..(x) for all natural numbers m,n. He also proved that if {/.(z)} is a

family of permutable polynomials such that the degree of y.(x) is n for all n, then/.(x) is similar to

either v.(x) or x", that is, there exists a polynomial g(x) ax + such that/.(x) g(::) *V.(x) *g 1()
or /’.(x)= g()*" .g-l(z), where denotes composition. Jacobstahl also noted that the Vieta

polynomials are related to the Chebychev polynomials of the first kind (denoted T.(x)) by the

identity:

V.(x)=2T.(1/2x) (1.XO)

In addition, he gave an inductive definition for the V,(z), namely:

Vo(x 2, Vl(X x, Vn(x xV (x)- V 2(x),n 2 (1.11)
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The Lucas polynomials, defined by Bicknell in [7] as

Lo(x) 2, Ll(x x, Ln(x xL l(x) + Ln_ 2(x),n >_ 2

are no__At permutable and satisfy

[lnl

as well as

(1.12)

Vn(ix)=inLn(x) (1.14)

where (- 1).
In conclusion, we point out that Bergum and Hoggatt [8] prove that if k > and p is an odd

prime, then Lk(:c) and Lr,()/: are irreducible over the rationals. Their proofs adapt easily to show

that the same properties hold respectively for vk(,) and Vp(:c)/x. In this paper, we generalize the

latter result. Specifically, we prove that if m > 1, p and n are odd, and p is prime, then both

Vm,(x.)/v,(z and V3(2,,,)(:c)/v,.,(a: are irreducible over the rationals.

2. PRELIMINARIES.
Below is a list of identities, some of which are used to develop the results in section 3 of this

paper, while others are of interest in their own right.

Using (1.9) and (1.10)in Rivlin [9], with (1.10), we have

[1/2n]
B(n,j) "-1- : :

Letting y-1 e0 in (1.4), we have

-,]

2 cosh nO E (-1)’B(n,J)(2 cosh 0) 23

3-0

while

op(B(n,j)) > op(n)-op(j)
where op(n)= h if phln, ph+ ln, h > O, follows directly from (1.2) and the laws of exponents.

In Cohn [10, p. 156], we find

x2- 5y --4 if there exists an odd k such that

x Lk, y Fk

while

(2.3)

(2.4)

Vmn(X Vrn(Vn(x)) for all m,n

appears in [6].
Letting x - ’a in (1.4), we have

2 cos nO Y] (-1)JB(n,j)(2 cos O)
3o

(2.)

(2.6)
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Using (1.9)with (2.6)and (2.2), we obtain

V,(2 cos 0) 2 cos no (2.7)

and

v,(2 cosh 0)= 2 cosh nO (2.s)

Finally, we observe that it is easy to show that

5F4m+l-L4m+l = 4"4( mod 10),m_> 0 (2.9)

3. THE MAIN RESULTS.
We begin with some divisibility properties of the B(n,j).

THEOREM 1. If < j <_ [-], ph n, and io I J, then io
n B(n, j).

PROOF. This follows from the hypothesis and (2.3).
THEOREM 2. If < j < [] and (n,j) 1, then n lB(n,j).

PROOF. Equation (1.2) implies n ljB(n,j). The conclusion now follows from the hypothesis

and Euclid’s Lemma.
p is an odd prime and _< j _< P-, then p lB(p, j).COROLLARY 1. If

PROOF. This follows directly from Theorem 2.

THEOREM 3. For all j such that < j < [_n_] there exists a prime, p, such that pin and

io B(n,j).

PROOF. Assume the contrary. Then there exists j such that _< j _< [-] and for all primes

p where ioln we have io][B(n,j), so op(B(n,j))=O. But then (2.3) implies ot,(n)<_ot,(j). Since this

inequality holds for all prime divisors of n, we have nil which is contrary to our hypothesis.
kCOROLLARY 2. If < j _< [io ], then iolB(io’, j).

PROOF. This follows from Theorem 3.

THEOREM 4. Let p be an odd prime. If _< j <_ iok, then p lB(2pk, j). If _< j _< 2pk and

j # iok, then p lB(4pk, j).

PROOF. The hypothesis implies that or,(j < k- 1, so the conclusions follow from (2.3).
THEOREM 5. If %(n)= l, then iolB(n, io).

PROOF. The hypothesis implies that n=kio and iolk. Since (1.2) implies that

B(n, p) B(kp, p) kp-- kp io the conclusion follows directly from the fact that11 p-i
ptP,-,’tp-p-i).

i-1

The next result provides an analog to the identity (-1)()= o.
j=0

THEOREM 6. 1)JB(n,j) 2 if n 0( mod 6), if n =_ + 1( mod 6),
j=o -lifn= 4- 2(mod6),-2ifn=3(mod6)

PROOF. This follows from (1.3) with 0 r/3.
The next theorem locates the largest entry or entries in the nth row of Vieta’s triangular

array.

THEOREM 7. If 0 < j < [1/2n], let (5n+6-(5n-4))/lO.
If r is not an integer, then B(n,[r]) > B(n,j) for all j It].
If r is an integer, then B(n,r- 1) B(n,r) > B(n,j) for all j # r- 1,r.
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B(n,j) where < j <[1/2n]. Equation (1.2)implies thatPROOF. Let f,(j)= B(n,j- 1)

n(n-j-1)! (j-1)!(n-2j+2)! (n+l-2j)(n+2-23)
fn(J) j!(n- 2j! n(n- j)! j(n- j)

Now B(n,j), considered as a function of for a fixed value of n, is increasing, decreasing, or not

changing accordingly as y,(j) is greater than, less than, or equal to 1. These possibilities occur

accordingly as 5j2-(5n+6)j+(n+l)(n+2) is positive, negative, or zero, or accordingly as

< j < r,j r, or r < j < [lnl
If r is not an integer, then B(n,j) is increasing for < j < [r] and decreasing for [r] < j < [1/2n].

Hence, B(n,j) assumes a unique maximum at j [r]. If r is an integer, then B(n,r-1)= B(n,r) and

B(n,j) is increasing for < j < r-1, decreasing for r < j < [!nl Hence, B(n,j) assumes its maximum

value when j or r.

The following two theorems give necessary and sufficient conditions for r to be an integer.

THEOREM 8. (5F4, + 1- L4,, + + 6)/10 F,, + 1.

PROOF. This follows directly by induction, or by using Binet’s formulas for F,, and L,.
THEOREM 9. Let r=(5n+6-(Sn2-4)7/lO. Then r is an integer if there exists rn such that

n F4m + and r F,,, + 1.

PROOF. If r is an integer, then (5n-4) is an integer.

Therefore, t2-Sn -4 and (2.4) implies that there exists an odd k such that Lk, n Fk. Since

is an integer, we must also have 5Fk- Lk --4 (mod 10). Since (2.9) implies that k 4m-4- 1, we have

r (SF4m + L4m + + 6)/10. Theorem 8 now implies that r F, + 1. The converse clearly holds.

We now turn our attention to the Vieta polynomials.

THEOREM 10. If n is odd and p is an odd prime, then vp,(x)/v,,(:) is irreducible over the

rational numbers.

PROOF. Using (2.5) and (1.9), we see that

Vpn(X Vp(Vn(x)) =1/2( 1)
(-1)--j(3P p j-J)(vn(x))p-l-23__v.() v.() =0

(-1)3 P .(P- (-1. h--2S_. -’)zn
=o P--/" j ,=o

The lead term is z(’- 1),, while all other variable terms are divisible by p. The constant term

is p(- 1)(’- x). Therefore, the conclusion follows from the Eisenstein criterion.

One may conjecture that the conclusion of Theorem 10 is also valid when n is even, but this

difficult to prove.

LEMMA 1. V,m,(O)/V,(O if p is odd.

PROOF. Equation (2.6) implies that Vm(O V2,,(2 COS 1/2,r)= 2 COS mr 2(- 1)’. Therefore,

V2mp(O)/V2m(O 2( 1)i’m/2( 1) 1)(p 1)m 1.

REMARK. Lemma says that constant term in Vt,,,(z)/v,,(z is if n is even, so that

Eisenstein criterion is not immediately applicable to prove irreducibility.

THEOREM 11. Let g,,(z)- V2m(Z)-- 1, where m > 0. Then g,(z) is irreducible over the

rational numbers.

PROOF. (Induction on m) For 0,0( Vl(z)- z-1, which is irreducible. If m > 1,

let h,(V) m(V + 1) V2,,(V + 1) 1. Then

hm(O 9m(1) V2m(1 V2m(2 cos -)-- 2 cos (2mTr/3)- 2( _1_.)_ 2.
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But

hi(Y V2(y/ l)-I =(y-t-1)2-2-1-y2%2y-2,

and
m- 2"*- k

hm(y)= (_l)JB(2m, j)(y+l)2m-2J_l=y2 + _, ck, my2 _2.

.=0 k=l

We claim that each coefficient ck,, is even. To prove this, we note that

hm+ i(Y) V2m+ l(Y+ 1)- V2(V2m(y-b 1))- V2(hm(y)-F 1)- (hm(y)+ 1)2- 3

2 y2k )2 y2
m+12m+l-1 m+l

+ Z: + Z:
k=l k=l

-k -2.

Since (by induction hypothesis) all the ck,,, are even, it follows that all the %,m+1 are even.

Therefore, hm(y is irreducible over the rational numbers by the Eisenstein criterion, with p=2.

Letting x=y+l, we have g,n(z) is irreducible over the rationals for all m > 0.

THEOREM 12. If /’,,(z)= Va(,,)(z)/Y2,(z) where m >_ 0, then 1",() is irreducible over the

rationals.

PROOF.
Theorem 11.

fro(Z) (V2m(X)) 3 V2m + l(X) gm + l(X), so the conclusion follows from
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