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ABSTRACT. In this paper we study some properties of the semi-sub-hypergroups and the
closed sub-hypergroups of the hypergroups. We introduce the correlated elements and
the fundamental elements and we connect the concept antipodal of the latter with
Frattin's hypergroup. We also present Helly's Theorem as a corollary of a more

general Theorem.
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1. INTRODUCTION.

In 1934 F. Marty introduced a new mathematical structure which he called
hypergroup (see Marty [1]). A hypergroup (H,.), is a non-void set H endowed with a
hypercomposition "." (i.e. a mapping of H x H into the set P(H), of all subsets of H)
which satisfies the following axioms:

1) (Xey)ez = xo(y.2) for every x,y,z € H (associative axiom)
ii) x.H = Hox = H for every x € H (reproductive axiom)

It holds that x.y # ¢ for every x,y € H (see Mittas [2]). We note that if "." is a
hypercomposition in a set H and A, B are subsets of H, then A.B signifies the union

U(a,b)eAxB“'b’ A.b and a.B will have the same meaning as A.{b} and {a}.B

respectively. We also make no distinction between the elements and their
corresponding singletons, when nothing opposes it.

The hypercomposition leads, in a quite natural way, to two new

hypercompositions and ".." which are defined as follows (see also [1l]):

a:b = {x°¢ H' a € x.b)

a..b = {x ¢ Hl a € b.x}.
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Whenever "." is commutative, then a:b = a..b for all a,b € H. Besides one can easily
observe that a:b # ¢, a..b # ¢. Indeed since H = H.b = b.H there is at least one x
and one y such that a € x.b and a € b.y. Therefore, the sets a:b and a..b are non

void.

A subset K of the hypergroup Q will be <called a semi-subhypergroup
of Q if a.b cKk holds for every a,b € K, while it is called a sub-hypergroup of Q, if
the reproductive axiom holds in K as well (i.e. a.K = K.a = K for every a € K). It
is easy to prove that if in a semi-sub-hypergroup K, 1s valid a: bcK and a..bcK, for
all a,b € K, then K is a sub-hypergroup of Q. Indeed, the proof of the regnerative
axiom is as follows: Let a € K. Then a.K < K and K.a < K. Next, since r..a c K,
r:a ¢ K, for every r € K, we have: r c a.K and r c K.a respectively. Thus K c a.K and

K c K.a, and so K = K.a = a.k.

A sub-hypergroup K of 9 is called closed from the right (resp. from the left), if

a.K N K =¢ (resp. K.ankK = ¢) holds for every a € QK. K is called closed if it is
closed from the right and from the left. For the closed sub-hypergroups this
proposition is wvalid: K is closed from the right {f and only 1if the relation
a.KNK # ¢ implies that a € k (resp. from the left) (see also Mittas [2],[3] and

Krasner [4]).

Undoubtedly the hypergroup can be considered as one of the most general
structures of the abstract Algebra. Therefore, even the study of its elementary

properties, imposes technical difficulties on the whole procedure.

The hypergroup, very often, is endowed with axiows which vary in strength and
which make it a less general structure than the one that was initially introduced, and
so, the research on this field is led through more concrete paths. So for instance
F. Marty considered hypergroups, that have at least one bilaterally unit element and
which he named regular hyergroups. He also considered regular hypergroups H, such
that for every element a € H there exists at least one a' € H such that

e € a.a"'na'.a, where e is a unit of H. He named these hypergroups completely
regular hypergroups. A special form of a completely regular hypergroup is the
canonical hypergroup. It has a unit element, which 1is scalar ( s € H is called
scalar, if for every x € H the sets s.x and x.s are singletons) and a unique inverse
for every of its elements (see Mittas [2], Roth [5]). The hypergroup has also been
used as a basis for the creation of other algebraic structures, which were born out of
a mathematical need (exampli gratia see Krasner [6]). Some examples of such
structures are the hyperfields and the hyperrings (eg. Massouros [7], Nakassis [8]),
the hypermodules, the vector hyperspaces (Massouros [9], Mittas [10]) etc.

Numerous papers based either on the research of the algebraic structure of
hypergroups, or on the study and the development of the applications that can possibly
derive from them, have been published since 1934. Today the research leads to some
more specific hypergroups, but Marty's 4initial hypergroup has not been fully
investigated and there 18 the possibility for further research. In this paper we

present a series of properties and we study some special categories of elements, and
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the correlated elements and the fundamental elements, and motivated by the latter we
introduce Frattini's semi-sub-hypergroup. Also we prove a theorem, which, in our

opinion, is the most general form that one can give in Helly's Theorem.

2. SOME PROPERTIES OF THE SEMI-SUB-HYPERGROUPS AND THE SUB-HYPERGROUPS.

Let us begin this section by giving some examples of hypergroups.
(i) Let H be a non-void set with card H > 4. We introduced in it a

"won
.

hypercomposition as follows:

We define an element e to be the neutral element of H, that is a.e = e.a = a for
every a € H.

a.b = H - {a,b,e} for every a,b € H with a # b

a.a = {a,e} for all a € H.

won
:

Then (H,.) becomes a hypergroup (see also Nakassis [8]). For the two operations

" we have:

and "..
a:b = {x ¢ H| a € X.b} = H-{a,b} = b:a
ata = {x € H' a € x.a} = {a,e}

and because of the commutativity of ".", a:b = a..b.
(ii) Let H be a non-void set and "." a hypercomposition defined as follows:
a.b = {a,b} for every a,b ¢ H with a # b
a.a = H for all a ¢ H

":" and ".." we have:

Then (H,.) is a hypergroup and for the two operations
a:b = {x ¢ H' a € x.b} = {a,b} = b:a
ata = {x € H‘ a € x.a} = H.
Because of the commutativity of ".'" we have: a:b = a..b.
(i1i) Let H be a non-void set. We introduce in H a hypercomposition "." defined
as follows:
a.b = {a,b} for every a,b ¢ H with a # b
a.a = H - {a} for all a € H.

Then (H,.) becomes a hypergroup (also see Massouros [11]) and for the two operations

an we have:
a:b = {x ¢ Hl a € x.b} = {a,b} = b:a
ata = {x € Hl a € x.a} = H - {a}.
Since "." is commutative a:b = a..b holds.
(iv) Let H be a group. We endow H with a hypercomposition "." defined as follows:
a.b = {a,b,ab} for every a,b ¢ H.

"won

Then (H,.) becomes a hypergroup. In this hypergroup for the hypercompositions and

".." we have:
a:b = {x ¢ HI a € X.b} = {a,ab- }
a..b = {x ¢ HI a € b.x} = {a,b_la}.

(v) Let V be a vector space over an ordered field F. We introduce in V a

1

hypercomposition defiend as follows (also see Vougiouklis [12]):
a.b = {aa + xbl 0 <A, kKt A+ =1}
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Then (V.,) becomes a hypergroup. One can see that the convex sets of V are simply the
semi-sub-hypergroups of (V,.), while the subspaces of V are the closed sub-hypergroups
of (V,.). So 1in some vector spaces, one can have an optical view of the
hypercomposition, the semi-sub-hypergroups and the closed sub-hypergroups.

PROPOSITION 2.1. A sub-hypergroup K of a hypergroup Q is right closed (resp. left
closed) if and only if a:b <K (resp. a..b S K) for every a,b € K.

PROOF. Let us suppose that K is a right closed hypergroup and let a,b € K. Then
for every x € a:b we have a € x.b; 80 K N1 x.K # ¢. Thus, since K 1is right
closed, x € K. Hence a:bc K. Conversely, let K N x.K # ¢, for some x € Q. Then
there are a,b € K such that a € x.b, thus x € a:b and since a:bcK, we have x € K.

PROPOSITION 2.2. Let K be a closed sub-hypergroup of a hypergroup Q and let

a e K. Then
K = K:a = a:K = K..a = a..K.

PROOF. Since K is a closed sub-hypergroup we have K: acK. Now, let x € K,
then x.acK and so x € K:a. Thus K cK:a and consequently K = K:a. Similarly the
other equalities can be proved.

PROPOSITION 2.3. Let (H,.) be a hypergroup. Then,

i) (a:b):c = a:(c.b) and (a.<b)e.c = a..(b.c)

(i1) b € a..(a:b) and b € a:(a..b)

PROOF. 1) Let x € (a:b):c. Then x.c N a:b # ¢, and therefore

a € (x.c)eb = x.(ceb). So there exists an element z € c.b such that a € x.z.
Thus x € a:z, and therefore x € a:(c.b). Conversely, let x € a:(c.b). Then
a € x.(ceb) = (x.c)ebe Thus x.c Na:b # ¢. Let z € x.cNa:b. Then x € z:c and

therefore x € (a:b):ic. The proof of the other equality is analogous to this one.

(i1) 1If z € a:b, then, by definition, a € z.b. Therefore a € (a:b).b. This
means that there 1s an x € a:b such that a € x.b or equivalently b € a..x.
So b € a..(a:b). Similarly one can prove that b € a:(a..b).

SYMBOLISM. Let E be a subset of a hypergroup (H,.) Then [E], < E > will signify,
the semi-sub-hypergroup and the closed sub-hypergroup of (H,.), respectively, which is
generated from E and contains 1it. Also, as a matter of, simplicity we shall
write [“1’°2’°°"°n] and < @05y > instead of [{al, 02,...,an}] and

< {ul, a2,...,an} De
PROPOSITION 2.4. Let H,K be two closed sub-hypergroups of a hypergroup Q, then

<{H K> =<HXK>=CH:K > =< HK >

SKETCH OF PROOF. Since H.K c < HUK > we have that < H.K > ¢ < HU K >. On the
other hand H ¢ < H.K > and K << H.K >. Indeed, for H, for instance, we have:

< H.K > 2(H.K):(H.K) = (because of prop. 2.3,1)
((H.K):K):H 2

H:H = (because of prop. 2.2)
= H

Y]
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Thus <H K > < < H.K > and so < HUK > = < H.K >. Analogous 1is the proof of the
other equalities.

PROPOSITION 2.5. Let A and B be two subsets of a hypergroup 2 and H a closed sub-
hypergroup of @ such that B ¢ H. Then:

i) (A:B)NH = (ANH): B

1i) (A..B)NH = (ANH)..B.

PROOF. From the relation A NH S A we have
(AnNH): B c (A: B) (2.1)

Also from the relations ANHCH and B € H we have
(ANH) : BCH (2.2)

Thus, from the relations (2.1) and (2.2) we deduce that
(ANH): B c(A:B) NH.

Next let x € (A:B) NH. Then there are a € A, b € B such that x € a:b or
equivalently a € X.b. But x.bcH, thus a ¢ H so a ¢ ANH. Therefore

atbc(ANH): B and thus x ¢ (ANH):H. So (A:B) N Hc (AN H):B and the proof is
completed. With the same procedure we can prove (ii).

PROPOSITION 2.6. Let A,B be two subsets of a hypergroup @ and H a closed sub-
hypergroup of Q with A cH.
Then

(A.B) NH = A.(B NH).

PROOF. From the relation A.(B NH) € A.B, H we deduce that A.(B N H)CS (A.B) NH.
Next let x € (A.B) nH. Then there are a ¢ A, b € B such that x € a.b, from where we
have b € x..a and so b € H. Thus b € BNH and therefore x € A.(BNH). Hence
(A.B)N H cA.(BNH) and so the proposition.

In Vougiouklis [12] p. 9 one can find interesting remarks on relations like the
ones of propositions 2.6 and 2.7.
PROPOSITION 2.7. Let H be a hypergroup and a € H.
Then
[a] = al Ua.2 Ueoo UGS ...

where al = {a}, 0.2 = q.a and ai = a.ai—l.

SKETCH OF PROOF. Let A be the right part of the above equality. Then it is
obvious that A cla]. Next it 1is not difficult to show that A 1is a semi-sub-

hypergroup of H and moreover that it is the minimum one generated by a and containing
it.
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REMARK 2.1 (i) If for some term of A, the relation angaanzu... Uan-l is

valid, then we have that a.n+rg alu aZU... U an_l, for every r ¢ N (see Vougiouklis
[13]). 1ii) A semi-sub-hypergroup, which is generated by a single element is called a
monogene (see Mittas [2]).

THEOREM 2.1. Let us consider a subset E of a commutative hypergroup H. If

E = {al,az,...,an} then
(E] = ({a;] V.. Ula DU
UClaylelay] Uees Ula _ Tela DU
Uesall
UClagde oo o T D

SKETCH OF PROOF. Let A be the second part of the above equality. Since [E] is

the semi-sub-hypergroup which is generated from a,, ... ya we have @y eees @ € [E]

>
and one can easily see that [E] must contain all :.he sets of the form

[ail' oo .[aj] with 1 <1 <j <n. Thus A c [E]. Next, through not so difficult
calculations, one can prove that A is a semi-sub-hypergroup and moreover that it is
the minimum one generated from [E].

PROPOSITION 2.8. In every commutative hypergroup H the set
n
i [ai] = [al].[azl. vee o [an] is a semi-sub-hypergroup of H that absorbs every
i=1
element of [al,u ,...,an].

2
n
PROOF. 1In the beginning we observe that the set I [ail absorbs all the monogene
i=1

semi-sub-hypergroups [ci], 1 <1i < n. Indeed for every £ € {1,2,...,n} we have

([al].[aZ]. eee .[an])[all = [ull.[azl, e .[a.n].

n
From this relation we conclude that I [ail absorbs every set of the form
i=]
n
[au]. ces .[au] with 1 < 4 < oee < L <n. Thus if x,y € i1.11[0;1] then
n n n n
x.ycl [ci]. M [a,] =1 [a,] and so 0 [a,] is a semi-sub-hypergroup of H. Next we
i i i
i=1 i=1 i=1 i=1
have

n

O [a,] ¢« [a,50,560e,a ] =

1=1 i 1’72 n

= ([all . [a2]. oo o [an]).

. ([al] Usoo U[a.n] u

U[a“] . [an]. ces o [alK]U .
U[(!_ll . [azl. oo o [a.n]) =

n
= [al].[azl. cee .[an]U... U[al].[azl. eee .[a.n] -11-11 [a.i].
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PROPOSITION 2.9. Let us consider a subset E = {al,uz, ves an}, of a commutative

hypergroup H. Then
[ul,az,...,un] = ([0.1] U [u2] U...U[cv.n])n
PROOF. From the Theorem 2.1 we have
[01] U[a2] Uooo U[a"] S[al,az,...,an].

And since [a ,...,an] is a semi-sub-hypergroup, ([al] U [azl U,..U [oz“])n

1°%
S[ul,uz,...,an]. Conversely. Let x € [al,az,...,an]. Then there are L ELEXELI
with 1 < Q’l K ees £ R,K < n such that x € [a“]. cee .[au]. In the case

that JLK < n we add to the above relation some more terms until we get n terms.

[a, Je eoe ola, ] = [a, . Je eee ola, Jo oos .[ak]

21 J73 21 §13

Thus we have
a Cla. U-oo Y Q

lag,l o] Ueerula]

[au] E[al] Usesl [an].
Therefore
lagle ee + lag d cClay] veeet La,D®

and the Proposition is proved.

3. CORRELATED ELEMENTS.
DEFINITION 3.1. In a hypergroup H the elements A sQyseces @, will be called
correlated 1if there are distinct integers AI,...,)‘\,,KI,...,KD that belong to
{1,2,...n} such that
[un,..-,a)‘v] n[aKl,...,aKu] % ¢
In the contrary case the elements ApsByseee @ will be called not correlated.

THEOREM 3.1. Let us suppose that the elements Qs eee @ of a hypergroup Q are
correlated. We consider all the semi-sub-hypergroups of Q which are generated from
n-1 elements of the above ones. Then the intersection of all these semi-sub-
hypergroups is not void.

PROOF. Since the elements are correlated, there are distinct integers

Kl""’Kv’)‘l’ ...,)‘u ¢ {1, «..,n} such that

[axl’ e ,aKv] n[a“, ...,a)‘u] + ¢. (3.1)
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But every semi-sub-hypergroup which is generated by n-1 elements from
the Ay eeee, A contains one of the two semi-sub-hypergroups that are mentione in the
above relation. So the elements of the Intersection of the two sub-hypergroups of
(3.1) belong to all the semi-sub-hypergroups that are produced from n-1 elements.
Consequently these elements will also belong to the intersection of all these semi-
sub-hypergroups and therefore thelr intersection will be non-void.

THEOREM 3.2. Let Q2 be a hypergroup in which the elements of every set with
cardinality greater than n, are correlated. Also let (Ki)iel’ with card I > n, be a
finite family of semi-sub-hypergroups of Q. Then, if every n of these semi-sub-
hypergroups have non-void intersection, all of them have non-void intersection.

PROOF. We shall prove the theorem by induction. We shall first show that the
intersection of every n + 1 semi-sub-hypergroups 1s non-void. Without 1loss of

generality we may prove this statement for the semi-sub-hypergroups

Ki» 1 <1 <n+l. Thus every time we choose an element which belongs to the
intersection of n semi-sub=hypergroups of the Kip 1 <1< n+l . So
n .
let X € 14 Kj Then
Kps vovy Xy 1oXggaeeenX o) € Ki

and therefore

[xl"°"xi—l’xi+l""’xn+ll EKi.
But every n+l elements of Q are correlated, thus the elements Xps see 5% ) are
correlated and because of the Theorem 3.1, the semi-sub-hypergroups

Xis wees Xy 10Xy eee ’xn+l]’ 1 <1 < n+l
have non-void intersection. Consequently the sets Ki’ 1 < i < n+l have non-void
intersection. Now, suppose that the intersection of the members of each set of
(card 1) - 1 semi-sub-hypergroup's is non-void. So, for every i ¢ I,, we pick an

element Xy which belongs to the intersection n x Then

j# 3
Xy = xy, 3 e -1k,

and therefore [Xi] ck But every n+l elements of Q are correlated, thus the

e
elements {xi, i € I} are also correlated and because of Theorem 3.1, the semi-sub-
hypergroups [X;], 1 € I have non-void intersection. Consequently the sets

Kyp 1 el have non-void intersection.

In the case of the hypergroup (V,.), where V is a vector space, the correlated
elements are directly connected with the affine dependance. It can be prove that the
correlated elements are affinely dependent and that the affinely dependent elements
are correlated. Indicatively let us show the first part of the above. Suppose that
the elements 8y, eee, 8, of V are correlated. Then there are distinct integers
Al, ceny xv, kl,...,ku such that
[akl’ ceey aAv] n[anl""’aku] # b
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But because of the Theorem 2.1 the semi-sub-hypergroups of the form [a“....,a)‘vl can
be represented from the combinations of the monogene semi-sub-hypergroups [a)‘]. So

some intersections of these combinations are non-void. Also [ai] = a Thus, there

L
are {il, ees 1K} c {Al,...,)\v} and {jl, e ’jt}-c- {Kl, cee Ku} such that

¢« see o o eee o * ¢
2 33 M2y ap T ¢

Now let x be an element which belongs to this last intersection. Then

withrl+...+rk=landx-sa + ..o + s 2 with

= + 00 t+
=0 "l 125 t?5t
5, + oo +st== le Thus we have
slajl + oeee + stajt + (—rl)ail + eee + (—rK)a“ =0

with s, + eee + s, + (-rl) + oo + (—r‘) = 0 but without all the coefficients s, r

being equal to 0. Thus the elements a;, ¢+, a, are affinely dependent.

After this remark we can take the I-Ielly'sn Theorem (e.g. see Bronsted [14]) as a
corollary of Theorem 3.2.

COROLLARY 3.1. Let us consider a finite family (Ct)iel of convex sets in Rd, with
d+1 < card I. Then, if any d+1 of the sets C1 have a non-empty intersection, all the

sets C; have non-empty intersection.

4. FUNDAMENTAL ELEMENTS.

DEFINITION 4.1. Let a be an element of a semi-sub-hypergroup H of a
hypergroup . Then a will be called fundamental element of H, if from the
relation < a >Nx.y # ¢, it follows that x,y € < a >, for every x,y € H.

In what follows Q will signify a hypergroup and H a semi-sub-hypergroup of Q.

PROPOSITION 4.1. a is a fundamental element of H if and only if H - C a > is a
semi-sub~-hypergroup of H or the void set.

PROOF. 1If a is a fundamental element and x,y are in H - < a >, x.y is a subset of
H that does not intersect < a >. Hence x.y cH - ( a > and so H - < a > is a semi-
sub-hypergroup of H. Conversely, let a € H and let H - < a > be a semi-sub-hypergroup
of H. Let us suppose that there are x,y € H such that ’

<ad>fx.y # ¢, x,y € H.

Both x,y can not belong to H - < a >, since H - < a > 18 a semi-sub-hypergroup of H.
If xe<ad then <ad>N<a>.y#* ¢, from which y € < a >: < a > or equivalently
y e <abd Therefore a is fundamental. If H - < a > = @, the proof is trivial.

REMARK 4.1. Let a be an element of H. Then a is a fundamental element of H if
and only if from the relation

<adfa e eoe o a # ¢, {al, .-.,a.n}gll, n>2

1 n

we derive {al,...,un}s< a D

Indeed if < a > intersects @pe eeee @ # ¢, then < a > contains a and intersects

Gpseeesd e



302 CH. G. MASSOUROS

PROPOSITION 4.2. Suppose that there is a subset A of H such that H = [A]. Also
let a be a fundamental element of H. Then
<CadNA % ¢.
PROOF. Since H - < a > is a semi-sub-hypergroup or the void set, if A did not
intersect < a >, 1t would at most generate H - < a >.
THEOREM 4.1. Let H be commutative and H = [A], for some subset A of H. Also let
a € A be a non-fundamental element of H. Then
<ad>N[A - {a}] # ¢.
PROOF. From the assumption that a is a non-fundamental element, derives that

there are x,y € H = < a > such that

<Cad>flxey # ¢ (4.1).
Since H = [A] there are elements of A such that

X € [al] . eee .(un] (4.2)
and

y € [an+l]. tes o [o,K] (4.3).

Now from the relations (4.2) and (4.3) we have

x.yS_[ul]. cee o [an].[un | T [a‘]

+1

or eliminating the equal terms we get
C

x.y_[Bl]. cee o [8u] (4.4)

Combining now (4.1) and (4.4) we have
<adn [31]’ .[Bu] % ¢ (4.5)

If in (4.5) holds it holds that [Bl] # [a], for every £ = 1,...,u, then the theorem

has already been proved, because
(81 «oe + (8] < [A - {a}]
and <a>nla - {a} # ¢.

But if we suppose that one of the [Bi] 's say [Bl], equals [a], then
<a> n[c].[BZ]. cee o [Bu] + ¢ From the last relation we derive that there are
ve<ca> welal] and B ¢ [82]. ees o [Bu] such that v € w.B8, from which it follows
that B e viue So Be<ad> Hence Be<adn [82]. ces . [Bu]. Thus
<a>n [82]. cee o [Bu] +# ¢ and this completes the proof.

According to Proposition 2.8, the set [Bl]° e o [Bu] of the relation (4.5) of
the above theorem, 1s a semi-sub-hypergroup of H. So if
x € [a] ﬂ[BII. cee o [Bl]° vee o [Bu], then

(x] < la] (8] ... .8 ] (4.6)

Now, assume that the sets [x], x in H, are a partition of H. Then from (4.6) we get
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that [x] = [a]. Thus the relation [a]l [A - {a}] # ¢ becomes [a] €[A - {a}] and so
we have the Corollary.

COROLLARY 4.1. Let H be commutative and H = [A], for some subset A of H. Suppose
that the sets [x], x in H, are a partition of H. Then [A - {a}] = H, if ais a
nonfundamental element.

Thus we observe thal there are certain elements which always participate in any
set of generators, elther by themselves, or through those elements that derive from
their monogene sub-hypergroups. Even though these elements are fundamental (and this
is why we have named them so) for the genesis of the semi-sub-hypergroup, there are
times that they can noL produce the semi-sub-hypergroup by themselves. On the other
hand we can deflne the nongenerators of a semi-sub-hypergroup H in the same way, as
they are defined in the classical case in group theory i.e. t is called a nongenerator
of H if H = [t,X] always implies that H = [X], when X is a subset of H. So the
nongenerators are the concept antipodal of the fundamental elements and when their set
is non-void, they form a semi-sub-hypergroup ¢(H) of H which we shall call Frattini's
semi-sub-hypergroup. If we would like to have an optical view of the fundamental
elements and Frattin's semi-sub-hypergroup we could consider the vector space R2 in
example (v). 1In this hypergroup any convex angle is a semi-sub-hypergroup. The only
fundamental element of a convex angle is its vertex, while all the other points
(elments) of the angle are nongenerators and they form the Frattini's semi-sub-
hypergroup. Of course it 1is obvious that the only fundamental element of the angle

can not generate the angle by itself.
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