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The notion of "Semigroup compactification" which is in a sense, a generalization of

the classical Bohr (almost periodic) compactlflcation of the usual additive reals R,

has been studied by J.F. Berglund et. al. [2]. Their approach to the theory of

semigroup compactification is based on the Gelfand-Naimark theory of commutative C-

algebras, where the spectra of admissible C*-aigebras, are the semigroup

compactifications. H.D. Junghenn’s extensive study of distal functions is from the

point of view of semigroup compactiflcations [5]. In this paper, extending Junghenn’s

work, we generalize the notion of distal flows and distal functions on an arbitrary

semitopological semigroup S, and show that these function spaces are admissible C*-
subalgebras of C(S). We then characterize their spectra (semigroup compactifications)

in terms of the universal mapping properties these compactlficatlons enjoy. In our

work, as it is in Junghenn’s, the Ellis semlgroup plays an important role. Also,

relating the existence of left Invariant means on these algebras to the existence of

fixed points of certain affine flows, we prove the related fixed point theorem.

l. PRELIMINARIES.

Let S be a semitopologlcal semigroup (binary operation separately continuous)

with a Hausdorff topology, and C(S) denote the C*-algebra of all bounded complex

valued continuous functions on S (all topologies are assumed to be Hausdorff).

For s S, define LS and Rs on C(S) byLsf(t) f(st) and Rsf(t)
f(ts) (f e C(S) and t S). A subspace F of C(S) is left (right) translation

invariant if LsF c__ F (RsF c_ F). It is translation invarlant if it is both left and

right translation invarlant. A C*-subalgebra F of C(S) is called admissible if it is

translation invariant, contains the constant functlons, and is left-m-introverted,

i.e., Txf(.) x(L(.)f) is a member of F whenever f F and x belongs to the spectrum

of F (the space of all nonzero continuous homorphisms on F). In this

case, T :F F is called the left-m-introversion operator determined by x. A right
x

topological compactificatlon of S is a pair (X,), where X is a compact right

topological semigroup (i. e., X is a compact semigroup with the

mapping x/xy:X/X continuous for all y X), and :S/X is a continuous homorphlsm with

dense image such that for each s e S, the mapping x/(s)x:X+X is continuous. If, in

addition, a C(X) F where F is an admissible subalgebra of C(S) and :C(X)/C(S) is

the dual mapping f/fo, then (X,) is called an F-compactiflcation of S. A right

topological compactlfication X,) of S is said to be maximal with respect to a



254 R.D. PANDIAN

property P if K,) has the pcoperty P, a,d whe,lever (Y,3) is a right t.opologica[

compact if [cat ion of S with the property P, then there exists a cont [,uous

}omo,orphi,n :X+Y such that o8=. The factorizatlon of the mapping by i.

referred to . a universal mapping property of X,). F-compactficatio,s are

maxima[ with respet:t to the property that a CtX) c_ F [2, [[[ Theorem 2.4]. This

result will be used frequently without specific reference to it. For a fixed

admissible subalgebra F of CtS), all F-compact[flcations of S are algebraically and

topologically isomorphic, and hence, we speak of the F-compactlflcat[on of S. If F is

a norm closed, conjugate closed subspace of C(S) containing constants, then a F
(dual of F)is called a rean on F if (I)= III. If F is further closed under

multipli.cation (pointwise), a mean on F is called multlpllcative if (fg)

(f)(g), f, g e F. We denote the set of all means [multlplicatlve means] on F by

M(F) [MM(F)]. Wi+h w-topology, MM(F) is compact and it is the w-closure of e(S),

where e is the evaluation map {e(s)(f) f(s)}. We note that (MM(F), e) is an F-

compactification of S, and we call ths the canonical F-compactlflcatlon of S. We

wi[[ need the admissible subalgebra LMC(S) {f e C(S):s/(Lsf) is continuous for

a[[’ MMC(S)} in the sequel. We note that the LMC(S)-compactlflcation is maximal

with respect to the property that it is a right topological compactlficatlon of S [2,

III Theorem 4.5].

A flow is a triple (S,X,), where S is a semitopologlcal semlgroup, X is a

compact topological space, and :SX
X

is a continuous homomorphism such that t(s):X+X

is continuous for each s e S. 4e oten write (S,X) for (S, X, ) and sx

for (s)x. XX is a compact right topological semigroup (with respect to the product

topology and function composition) of all self maps of K. We denote the Ellis

XXsemigroup, the clsoure of (S)in by E(S, X). E(S, X) is then a compact right

topological semigroup. If X is a convex subset of a real or a complex vector space,

and ,(s):X+X is afflne for each s in S, then (S, X) is ca[led an affine flow. A point

x in X is called a fixed point of the flow (S, X) if s--X for each s in S. If Y is a

closed Invariant subspace of X, then (S, Y) is a flow under the restricted action. A

flow (S, X, ) is called distal if, whenever , y X such that lira six lira slY for

some net (si) in S, then x y. Let f e LMC(S) and Z be the closure of RSf in the

topology of polntwise convergence on C(S). Define :SZZ
by (s) Rs Z’I Then Z is

pointwlse compact [6], and (S, Z, )is easily seen to be a flow. f is called a

distal function if the flow (S, Z, ) is distal. H. D. Junghenn has shown that D(S),

the set of all distal functions, is an admissible subalgebra of C(S) and that a

function LMC(S) is distal iff uev(f) uv(f) for u, v in X and e E(X), the

idempotents of X, where (X,a) is the LMC(S)-compactlfication of S. Also, he has

proved that the D(S)-compactification (Y,B)is maximal with respect to the property

that xey=xy for all x, y in Y, e e E(Y) [5, Theorem 3.4].

2. GENERALIZED DISTAL FUNCTIONS.

Let (S, X, ) be a flow and E(S, X), the Ellis semlgroup. Define

E(S, X)n {glg2 gnlgiE(S, X)}. Then E(S, X)n and E(S, X)n are both

compact right topological semlgroups. We note that E(S, X)n is nonempty as compact

right topological semlgroups have Idempotent elements [4].
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DEFINITION I. A flow (S, X, 7) is n-distal (-distal) if for , y X, whenever

)n$(x) $(y) for some F. e ES, X), then () (y) for every r. e E(S x

( l E(S, x)n).
DEFINITION 2. A function f LMC(S) is said to be n-distal (-distal), if the

flow (S, Z, ), where Z is the closure of Rsf in the topology of potntwise convergence

on C(S), and (s) RslZ, is n-distal (-distal). We denote the set of all n-distal

(-distal) functions by Dn(s} iDa(S)]. Clearly, D(S)_c DI(s) c_ D2(S) c_ c_DS).
PROPOSITION 3. A flow (S, X, n) is n-dlstal if and only if, whenever

x, y e X such that llm six llm sly for some net (si) in S, then sx sy for

sn--every s e {sis2 s s S}.
n

PROOF. Necessity. Let x, y e X and (s i) S such that llm six llm sly.
Taking subnet if necessary, we have [llm w(si)](x) [llm (si](y). Then, by

hypothesis, (x) (y) for every E(S, X)n. Since (Sn) c_ E(S, X) n, it follows

that sx sy for every s e S n. Sufficlency. Let x, y e X and

llm (Sk) e E(S, X) such that (x) (y). Then by hypothesis, sx sy for

s e S n. Let e E(S, X) .n Then, i o 2o o n where

j lira (sij). By induction one can easily show that io2o On(X)
ij

lim l2m llmln -(SilSi2 SlnX) for each x e X.

Thus (x) 1o2o n(X) II 2 n
n

lm lm (st SlnY (y). If e E(S, X)n, then lira i’
i e (S, x)n,nand (x) llm i(x) lira i(y) (y). This completes the proof.

We note that if S S2, then DI(s) D2(S) Dn(S) D(S), and that if S has

an identity, then D(S) Dn(s) Din(S).
EXAMPLES. i) Trivially all distal functions are n- and distal functions.

(ll) Let S be the semlgroup of all strictly upper triangular matrices (elements on

the diagonal and below are zero) of order n+2 with entries from reals. With discrete

topology, it is a topological semlgroup and Dn(s) LMC(S) C(S). Defining g:S/R by

Dn-Ig(s) (cl,n+2vO) h 2, s (cl, j) e S, one verifies that g e Dn(S) and g e (S).

(ill) Let (N, +) be the semigroup of positive integers with discrete topology.

Define f (t) I/t if t < n+l and 0 if t > n+l. Again it is easily verified thatn
f e Dn(N) and f e Dn-I(N). Later we give an example f e D(S) but Dn(s) for anyn n

n.
Using the structure theory of compact right topological semlgroups, one may

readily prove the following result of R. Ellis: (S, X) is distal if and only if E(S,
X) is a group with respect to function composition and with identity, the identity

function [4, Proposition 5.3]. We have a more general result corresponding to

generalized distal flows.

PROPOSITION 4. A flow (S, X) is n-dlstal (-distal) if and only

if E(S, X)n (0 E(S, X) n) is left simple.

PROOF. We first prove the n-case. Necessity. Let Z E(S, X)n. It suffices to

prove that pe p for all p e Z and e e E(Z). Let x e X and e e E(Z). Then e is
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also an dempotent of E(S, X), and e()= e(e()). Therefore by delnlt[on of n-

distal, p(x) p(e(x)) for all p Z, and hence, p pe. Sufficiency. Let

x, y X such that p(x) p(y) for some p E(S, X). Then pn(x) pn(y) where

Pn E E(S, X) n. As Z is left simple, Z zpn. For any q Z, q rp
n

where
n n

r g Z, and q(x) (rpn)(x) r(p (x)) r(p (y)) rpn(y) q(y). Hence, the flow

is n-distal. The proof of the -case is similar. We omit the necessity part and

supply the sufficiency part. Sufficiency. Let x, y X and p E EiS, X) such that

p(x) p(y). Then, pn(x) pn(y) for every n. As pn g ES, X), a compact space,
n

there exists a subsequence of (p), call it (qn), such that qn/q0 in E(S, X). It is

readily verified that q0 E fiE(S, X)n and q0(x) q0(y). Since Z N E(S, X)n is left

simple, Z Zqo. Let g Z. Then lq0 for some I in Z. Now,

(x) l(qo(X)) l(q0(y)) lq0(y) (y), and this completes the proof.

LEMMA 5. Let S be a semitopological semigroup, (X, a)the canonical LMC(S)-

compactlflcatlon of S, and f LMC(S).

i) The following statements are equivalent.

a) f E Dn(s).
X
nb) T f T f for all. u v E X, and e E E(X)uev uv
xn+lc) uev(f uv(f) for all u v e X and e E(X).

The following statements are equivalent.

a) f e D(S)
b) T f T f for ai[ u O Xn v e X, and e e E(X).uev uv
c) uef(f) uv(f) for all u X. N xn), v E X, and e E E(X).

PROOF. For x X, let Tx be the left-m-introversion operator determlned by x.

Then, Z the closure of Rsf in the topology of pointwise convergence on C(S)

{Txf: x E X} [2, Lemma 4.19]. Defining k: X/E(S, Z) by k(x)(Tyf) Txyf, one

verifies that k is a ontinuous homomorphism of X onto E(S, Z) satisfying koa .
i) a) > b) Let u E Xn, v e X, and e E(X). Then, k(u) E(S, Z) n, and k(e) is

an idempotent of E(S, Z)n. As E(S, Z)n is left simple (hypothesis), k(u)k(e) k(u),

i.e., k(ue) k(u). In particular, k(ue)(Tvf) k(u)(Tvf) where Tvf e Z, i.e., Tuevf
Tuvf. Sinc___e X is right topological with w topology, it follows that Tuevf Tuvf

Xnfor all u v e X, and e e E(X).

b) > c) Let u Xn+l, v e X, and e e E(X). Then, u UlU2, where u X,
X
n

u
2 and uev(f) UlU2ev(f) ul(Tuvf) ul(Tuf) UlU2V(f) uv(f). Thus,

xn+uev(f) uv(f). It is easily verified that uev(f) uv(f) for u

c) ===> a) Let p E(S, Z) n and let d be an idempotent of E(S, Z)n. There

X
n

exists u e e e E(X)such that k(u) p, and k(e) d. Such a choice of e is
-I

possible as k (d) is a compact subsemigroup of X. Let v e X. For any w X,

w(T f) wuev(f)= wuv(f) (hypothesis) W(Tuvf). Therefore, Tuevf Tuvf. Now
Bey

k(ue) (Tvf) Tuevf Tuvf k(u) (Tvf)’ which implies that k(ue) k(u). Thus,

pd k(ue) --k(u) p pd k(ue) k(u) p. As E(S, Z)n is right topological, it

follows that pd p for all

p E E(S, Z)
n

proving that E(S, Z)n is left simple. Consequently, the flow

(S, Z, ) is n-distal, and thus, f g Dn(s). ii) The proofs of a) ==> b) and b) ==>
c) in i) are easily modified to prove the corresponding results in il). Let us prove
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the case c) ==> a). It suffices to show that f E(S, Z)
n

is left simple. Let

p fiE(S, Z)
n

and let d be an [dempotent of fl E(S, Z)n. There exists

an e e E(X) such that k(e) d. We prove the existence of an u in fiX
n such that k(u)

p. Let n be fixed and p e E(S, Z)n Then, p lim Pl for some (pi) E(S Z)n

X
n X

n
For each Pi’ there exists x E such that k(xi) Pi" Now (xi) (c_ has a

convergent subnet (xj) converging to an element, call t xn, in Xn. pj k(xj)_whlch
converges to k(xn) and hence p k(x ). We now have a sequence (Xn)C X, (x

n
xn),

having a convergent subsequence (x’ n) such that x’ u in X. One readily verifies
n

that u g0 Xn and that k(u) p. We omit the rest of the proof whlch is smlar to the

proof of c) ===> a) in i).

THEOREM 6. a) Dn(s) and D(S) are admissible subalgebras of C(S). b) The

Dn(s) -(D(S) -) compactificatlon (Y,B)of S is maximal with respect to the property

that

uev uv for u e yn+l (u e Y. flyn), v Y, and e e E(Y)

PROOF. a) Let (X,a) denote the canonical LMC-compactificaion of S. That Dn(s) is

a linear subspace of C(S) is immediate from Lemma 5 (i). It is easily verified that

xn+1Dn(s) is norm closed Let f Dn(s), u v X, e E(X), and s S. Then,

uev(L f) (s)uev(f) (s)uv(f) uv(L f). Hence, Dn(s) is left translation
s s

invariant. In a similar manner, one verifies that Dn(s) is right translation

invariant. The fact that X is the set of all multiplicatlve means proves that Dn(s)

is an algebra As uev(1) uv(1), Dn(S) contains all the constant functions Let

Dnw MM(Dn(S)) and f (S). Let 8:X MM(Dn(S)) be the restriction map. There

exists a w in X such that 8(w) w’ T f T f and uev(Tw,f) uev(Twf) uevw(f)
W W

uvw(f) uv(Twf --uv(Tw,f). Thus, Tw,f Dn(s)which proves that Dn(s) is left m

introverted. Thus, Dn(s) is an admissible algebra of C(S). The proof that D (S) is

an admissible algebra is similar, b) We give the proof for the -case, and omit the

proof for the n-case. Let (X,a) denote the canonical LMC-compactiflcatlon of S.

Let 8:X/Y denote the restriction mapping. The e is a continuous homomorphism of X

onto Y such that eoa B. First, we prove that Y has the property (I). Let

u e Y.O yn, v Y, and e e E(Y).___ u UlU2 where u e Y and u
2

yn. There exist

Xl, y X, d e E(X), and x
2 eft X

n
such that (xi) u

i
(i I, 2), O(y) v,

and 8(d)= e. Therefore, for any f e Dm(S), uev(f) (xdy)(f) xdy(f) xy(f)

[Lemma 5 ii)] --e(xy)(f) --uv(f). Hence, uev uv, and thus, Y has the property

(I). To prove that (Y, B) is maximal with respect to this property, it remains to

show that B0 C(Y0)c_ D(S) for any right topological compactificatlon (Yo’ BO)of S

having property (I), where Bo:C(YO) C(S) is the adJoint of BO. It is shown

that B0 C(Yo) c_ LMC(S) [5, page 385]. Therefore, there exists a continuous

homomorphism :X Y0 such that B0 6oa. Let g e C(Y0) and Bog f.

Now, a(s) (f) a(s) (Bog) BOg(s) g(B0(s)) g((a(s))).__ By taking

limits, x(f) g((x)) for x e X. Let u e X. O Xn, v X, and e e E(X).
n d(v) e YO and d(e) is an idempotent of Y0" Then ue(f)Clearly, d(u) Y0" OY0

g(d(uev)) g(d(u)d(e)d(v)) g(d(u)(v)) (since YO has property (I))

(g(d(uv)) uv(f). Thus f e D S) and this completes the proof
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3. INVERSE I.[M[TS AND Dns)-COMPACTIF[CAT[ONS.
In this section, we prove tlat U Dn(s) is an admissible subalgebra of CS), and

its compact[f [cation (X,) is the inverse limit space of the spectrum {Xn,nm where

Xn,an) is the DnS)-compactification of S and nm:Xn/Xm (n;m) is the restr[ctlon

map. Fo definition and terminologies in inverse [imlts, we shall follow Dugundji

[3]. Let 1 be a preordered set and {K}$eI be a family of topologcal spaces.

Fo ; , assume there [s given :X X a continuous map such that whenever

{x) ) n, q ,q o ,. Then the family :} is called an inverse

spectrum over I. The subspace {x e X: < ==> P[x" H o P(x)}, where

p: X X is the projection ma, is called the inverse limit spectrum of the

spectrum and is denoted by X

THEOREM 7. Let X be a compact topological space, and [X} g I, indexed by a

directed set I, be a family of topological spaces. Assume there are given : X X
for every and for ) , : X/ X surJective, continuous, and consistent maps

(i.e., for ) , o ) such that for any two distinct points x|, x
2

e X,
there exists $ e such that F.(xl) # .,$(x2). Then X is homeomorphlc to the inverse

ll, mit space of the spectrum {X: }.
w 0 TPROOF The hypotheses imply that for ) > q, F,q rl

Therefore {X:w} is an inverse spectrum over I. Set. {x e X: ==> p(x)} Eop(x)}

{x e FtXr: < ==> x (x where p (x) x }.

Define 8:X Xas 8(x)= (,i(x))igl. We complete the proof by showing that 8 is a

homeomorphism. If 4 , then p(O(x)) w(x)= wow(x) (by consistency of

maps) =op(e(x)). Hence, e(x) e x. If Xl, x2 are two d[stlnct points of X,
then by hypothesis, there exists e I such that (xl) $(x2). This implies that

8(i) 8(x2) and hence, 8 is inJectlve. Let y e X. For , we prove that

(P)) c-l(p(y)). Let z e (p(y)). Then, (z) p(y) and

(z) o (z) (consistency of maps) o p(y) p(y) (since y

-ITherefore, z g (p(y)). Thus we see that, if t, tl, t2, in, are

arbitrary members of I such that t ) t (I ( i n), then

(2) yt) c_ (Y) 0

-IAs t is continuous for each t and {yt} is closed, {wt (Yt):t e I} is a class of

closed sets in X, a compact space, with every finite intersection being nonempty (by

-l(yt )’ O(x) y and(2)). Therefore,
t s

fl
I l(Yt) # #" For any x e flteIt

hence e is surjective. Clearly 8 is continuous Since X is compact, 8 is a

homeomo rphism.

THEOREM 8. Let [F}eI indexed by a directed set I, be a family of admissible

subalgebras of__C(S) such that Frl F( () and (X, e) is the F-compactificatlon of

S. Then F U F is admissible and the F-compactification (X,e) is the inverse limit

space of the s%ectrum {X:w} where n:X X ( ) is the restriction map

((p) uIF ).
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PROOF. Since is directed, it is easily seen that F is admissible. Define

:X X as the restriction map. Then, in view of theorem 7, it suffices to prove

that o any two distinct points Xl, x 2 e X there exists n e such that

(x) * tx2). The fact that x[, x2e X and x * x
2

implies that there exists
n n

an e F such that x[) ,(x2 )" The fact that x I, x
2

e X and x x
2 impl[es

that there eKists an f e F such that xl(f) x2(f). By continuity of x| and x2,

there exist g I and g e F such that ](Xl)(g) xl g) x2 (g) n(x2)(g)" Hence,

(x I) # (x2) and that completes the proof. The following theorem is an immediate

corollary to theorem 8.

THEOREM 9. O Dn(s) is an admissible subalgebra of C(S) and [ts compactlflcatlon

(X,) is the inverse limit space of the spectrum {Kn:nm} where (Xn, en) is

the Dn(s)-compactification of S and :X X (n a m) is the restriction map. It is
nm m

clear that Dn(s) c_D=(S). Now, we give an example of a function f e D(S) but

D N)for any n. Let fn be defined as in Example ill. Defining f(t) as f(t)

I/t, t e N, we see that (norm). Thus, f e U Dn(N) C_D(N). Clearly,
n

f .D N). We remark that at this point we do not know whether the containment in

O Dn(s) c_D(S) is proper.

4. FIXED POINT THEOREM.

Let F be a norm closed, conjugate closed, [eft (right) translation invariant

subspace of C(S) containing constants. Then a mean on F is called left (right)

invariant if for each f e F, s e S, (Lsf) (f) [(Rsf) (f)]. A left (right)

translation invariant subspace F of C(S) is said to be left (right) amenable if there

is a left (right) invariant mean on F, and amenable if F is translation invariant and

both left and right amenable. L. N. Argabright [I] has proved that F is left amenable

if and only if every affine flow (S, X, ) such that {x e X:U A(X)C_F} # # has a fixed
x

point, where A(X) denotes the Banach space of all continuous complex valued afflne

functions on X, and U :C(X) C(S) is defined as U h(s) h(sx), s S, h e C(X), and

x e X. We make use of this result to prove the following fixed point theorem. Let

us prepare a lemma for proving the theorem. Defining : S M(F)M(F) as,
(s)(x) L x, where L denotes the adjolnt of L :F F, one verifies that, relative

s s , s
to the action (s, x) L x, (S, M(F), w) is afflne flow. If in addition, F is an

s
algebra, then MM(F) is a closed invariant subspace of M(F), and relative to the

restricted action, (S, MM(F), ) is a flow. These actions of S are called the natural

actions of S on M(F) (MM(F)). let (Z MM(Dn(S), B) denote the canonical Dn(s)
compactificatlon of S. Then relative to the natural action, (S, Z, ) is a flow.

LEMMA 10. The flow (S, Z, 7) is (n+1)-distal.

PROOF. Let z z
2

e Z and (si) c_ S such that lim siz lim siz2. I.e.,

lira 8(si)z llm 8 (si)z 2. Taking subnet if necessary, z0z ZoZ2 where

z
0

llm 8 (s i) e Z. Hence yZoZl yz0z2 for every y Z, from which it follows

that zz zz
2

for each z e Zz0. Now, Zz0, being a left ideal in Z, a compact right

topological semigroup, has an idempotent element e. Thus ez ez 2. For

sn+ls e sz 8(s)z 8(s)ez (Theorem 6) 8(s) ez
2

sz 2. Therefore,

(S, Z, ) is (n+l)-distal (Prop. 3).

THEOREM II. (Fixed Point Theorem) Dn(S) is left amenable if and only if every

affflne flow (S, Y, ) containng a closed invariant subspace Z such that (S, Z, ) is

(n+1)-dlstal has a fixed point.
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PROOF. Let Dn(S) be left amenable. Suppose that iS, Y, ) [s an affine flow

containing a closed invariant subspace Z such that iS, Z, ) ts (n+l)-distal.. Ue show

that {x Y:U A(Y) r Dn(S)} 0. Let x Z and h e A(Y). It is easily seen thatx
h

RsUxh Ush. Let tU x )be a net in U
S

h. The net (six) in Z has a convergent

subnet (s]) converging to some point 0 in o As ts): ts continuous,

ssjx sx
0

for every s e S Itence, h(ssj) h(sxo) for eery s e S. It follows

that Usjxh Ux h (po[ntwise). This proves that Ush RsUxh Is relatively compact in

the pointwIse tpology, and thus, U h e LMCtS). Let (X,) denote the canonical lC-

compactiftcatton of S. As (E(S, Z),)[s a right topological compactiflcation of S,

by the universal apptng property of (X,a), there exists O:X EtS, Z), a continuous

homomorphism, such that , o a . Then a(s)(U h) h(sx) h((s)(x))x
h{(O o a)(s)(x)}. Taking limits (a has dense range in X, and h, are continuous),

xn+lwe get u(U h) h((u)(x)) for each u X. Let u v e X, and e E(X)
Then (u) E(S, Z) n+l (v) E(S Z) and (e) is an Idempotent in E(S Z)
As E(S, Z)n+l is left simple O(u)O(e) (u). Hence, uev(U h) h(O(uev)(x))x
h((u)(e)(v)(x)) h((u)(v)(x)) h((uv)(x)) uv(U h). As X is rightx

Xn+ltop,ologtcal it follows that uev(U h) uv(U h) for any u e Thus,
U h Dn(s). This proves the necessary part For Sufficiency, let Y M(Dn(S)) andx ,

define (s):Y Y as (s)(x) L x, s S, x Y. Then (S, Y, ) is an affines
flow. Let (Z, B) denote the canonical Dn(s) compactification of S. Then the

flo (S, Z, )is (n+l)-distal (Lemma 10). So by hypothesis, (S, , )has a fixed

point Y0 such that Y0 sY0 (= LsYO) for every s e So Hence

Yo(f) LsYo(f) Yo(Lsf) for every s S and for every f Dn(s). Therefore, YO is

a left invariant mean on Dn(s).
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