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ABSTRACT. Let E be a Banach space, and let (Q, 4, P) be a probability space.
If LI(Q) contains an isomorphic copy of Ll[0,l] then in LE(Q) (1 < p < =), the closed
linear span of every sequence of independent, E valued mean zero random variables has
infinite codimension. If E 1is reflexive or B-convex and 1 < p = then the closed
(in Lg(ﬂ)) linear span of any family of Independent, E valued, mean zero random

variables is super-reflexive.
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1. INTRODUCTION.

Linear spans of sequences of independent real variables have been studied by
several authors. In [1l] and [2] H.P. Rosenthal utilized their properties to define a
new class of Banach spaces that has had important applications in the structure theory
of Banach spaces. 1In this paper we consider subspaces spanned by Banach valued random

variables.

Our notation is the following. (Q, $ , P) denotes a probability space. E is a
Banach space and y denotes expectation. A Banach valued random variable 1is Bochner
measurable x: @+ E and for 1 < p < =, Lg(n) is the space of E valued random
variables x for which u(l'x"p) < =,

We first state and prove a set of assertions (Lemmas 1.1 and 1.2) regarding
Banach valued random variables whose scalar counterparts are well known. As a
consequence, we obtain that any sequence of independent, mean zero, E valued random
variables, form an unconditional Basic sequence in Lg(n). This enables us to show
that in Lg(ﬂ) the closed linear span of any sequence of mean zero random variables has
infinite codimension (Theorem 1.5). Furthermore, using a characterization (due to
R.C. James) of super-reflexivity by infinite trees we show that when E is reflexive or
B-convex, then in Lg(ﬂ) (1 < p < =) the closed subspace spanned by any family of mean
zero random variable is super-reflexive.

LEMMA 1.1. Let x,y: Q@+ E be two independent, mean zero random variables. Then
wl Iyl w1 < ey |7 Lere
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PROOF. Let Px, Py denote the distribution functions of x,y respectively.

Then u||x+y“t [/ '|x+y|'r dPx(x)dPy(y) (By independence)

[ de (v [ 1x+y] | ap, (x)

[ ae 5) (f ||xey||ae, co0df

> dPy(y) Hf(x-'-y)dPx(x)Hr

[ ae )] |fxar, + ]|

I "yl'rdPy(y) (]dex(x) = 0 since p(x) = 0)
|y 15

similarly u(]|x]|%) < u(}|x+y||5-
LEMMA 1.2. Assume X;,...X; are independent, E valued, mean =zero random

]

\%

variables. Let {ei} be any choice of signs.

i<i<n

Then for 1 <p <= [||e X, + oo + e X ||Pap < 2P fl|x + ..o+ x ||Par

PROOF. For any cholce of signs {Ei}l<i<n let Sla {i'ei- + 1}, S2 = {1'21 = -1},

n n
Then I X, - L €,X, =L X,and I e X, + I X =1 ¢X,.
i Sl vt i 82 i i=1 t i Sl it i 52 i i=1 1

Set X =1 sixi, Y=L eixi.
i Sl i 82

Then X,Y are independent. Therefore by Lemma 1.1, (uIIX'lp)I/p < (u§|x—¥||P)1/p
] 2P < Gl fxx| PP
so Gl |xex||PYP < 2¢u| |x-v| | Py /P,

te (f]ex, +ev + enxnllpdp)llp <2(fflx; + oo+ xn||pdp)l/p.

DEFINITION l.1. A sequence (xn) in a Banach space is said to be a basic sequence
if (x,) 1is a Schauder base for its closed linear span [x,]. A basic sequence (x;) is
called wunconditional if, whenever the series Zanxn converges, 1t converges
unconditionally. The following characterizations of basic 4and unconditiomal basic
sequences are well known and can be found in [3].

PROPOSITION 1l.1. (i) A sequence (xn) i{s basic 1f and only if there exists a

number k > O such that for all positive integers m and n with m < n, and all scalars

aj,.+.,a, one has "jzl ajxj|| < k”jt_;ll ajlel. (i1) A basic sequence (xn) is
unconditional 1if and only if for all sequences of signs (en),tenanxn converges
whenever (a,) is a sequence of scalars such that Ta x is convergent.

LEMMA 1.3. If {Xn} is a sequence of independent, mean zero random variables in
Lg(ﬂ) (1 <p < =) then {Xn} is an unconditional basic sequence.

PROOF. Let {an} be any sequence of scalars. Then {aan} is independent, mean
m n
zero. So by Lemma 1.1 (u" I oX I'P)l/p < (ull I oX ',p)l/p if m < n. This shows
351 %%y 1 3

o
that {Xn} is basic. Furthermore, if we assume that I a X 1s convergent
n=1
(in Lg(n)) then for any choice of signs {en} and m < n, Lemma 1.2 gives

n n
sz, Ej“jxj"p)llp‘ Zl/p(“”jfm “jxj'lp)llp~
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Thecefore, nzl ﬂ‘%1xn converges in Lg(n). Consequent ly {Xn} is unconditional. We
shall now show Lhat in Lg(u) every sequence of [ndependenl mean zero random variables
spans a subspace of infinite codimension. In [3] there Is an elementary proof for the
vase p = 2 and E = R. Our result is almost immedfate fu view of the following facl
whose proof is in [4].

LEMMA 1.4. 1If F is any Banach space which has an unconditional basis then F does
not contain an isoworphic copy of Ll[O,l].

THEOREM 1.1. Assume (R, , P) is probabllity space such that Ll(ﬂ) contalns an
isomorphic copy of Ll[0,l]. [f 1 <p <x E is a Banach space and if {Xn} LE(Q) is
an independent mean Zero sequence then [Xn], the closed linear span
of [Xn} in Lg(ﬂ) has infinite codimension. |

PROOF. It 1is eaaily seen that Lf L (Q) contains an 1isomorphic copy
of L [0,1] then so does L (Q) Since Q {s a probability space Lg(n) is a dense
subspace of L (Q) for

1 <p ( = Therefore, if [X ] has finite codimension in LP(Q) then it has Elnlge
codimension in LE(Q) Thus it suffices to establlsh the assertion for LE(Q).
Suppose that for some [ndependent sequence {X } LE(R), [X ] is of finite codimension
m(say). Let {Yl"°°’Y } be a base for the subspace complementary to [Xn]. Then
{Yl""’Y xl,...,x .++} 18 a Schauder base for LE(Q) From the results in sectfion
1, {X } ts an uncond{t{onal basic sequence. Therefore, the above described base i{s an
unconditional base for L Q). This 1is not possible since Lé(ﬂ) contains an

isomorphic copy of L [o,1].

2. The notion of finite representability as well as the notions of finite and
infinite tree properties were introduced by R.C. James, ([S5], [6]) who also
characterized super reflexivity in terms of infinite trees. We shall give the
definitions and theorems used to obtain our results.

DEFINITION 2.1. A Banach space F 1is sald to be finitely representable in the
Banach space E if the following condition holds. For every € > 0 and any finite
dimensional subspace F, of F there is an into isomorphism T:FO + E such that

(1 - e)llx'lp < |’Tx|.z < (1 + e)'lxl‘F for all x ¢ Fo.

DEFINITION 2.2. A Banach space E is said to be super-reflexive if every Banach
space finitely representable in E is reflexive.
DEFINITION 2.3. Let 0 < § < 2 and let n be a positive integer. An (n,$) tree (in

X1 * %2
a Banach space) is a finite sequence {xl,xz,...,x n } such that Xy =5 fo

admissible 1, and ”xi - x21+1‘| > 6, "xi- x21_1‘| > 6.
The following theorem is due to R.C. James.
THEOREM 2.1. A Banach space E is super-reflexive if and only if for each § >0
there exists n € N such that the unit ball of E does not contain an (n,§) tree.
We also utilize the following definitions and theorems.
DEFINITION 2.4. A Banach space E is sald to be B-convex if 1, is not finitely

representable in E.
THEOREM 2.2. Let E be a Banach space with unconditional base. Then the following

are equivalent:
1) E is B-convex
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(i) E is reflexive
(iti) E is super-reflexive
A proof of this theorem appears In the lecture notes of Woycaynski [7]. 1t is known
that the property of super-reflexivity is stronger than the property of B-ronvexity.
Also, B-coavexity does not imply and is not tmplied by reflexivity.
We now stale and prove our result.
THEOREM 2.3. Assume that E is either a reflexive or B-convex Banach space. Llet

Il <p < = and ff\}A oL be a family of Independent, mean. zerv random vaciables

in LE(Q). Then its closed linear span, [f)‘]X DL is super-reflexive.

PROOF. It is known that if E 1s B-convex (respectively reflexive) then
for 1 < p < =, Lg(Q) is also B-convex (respectively reflexive). Further «closed
subspaces of B-convex (reflexive) spaces are B-convex (reflexive). Suppose
that [f\]A e L {s not super-reflexive. Then by the negation of theorem 2.1, there
is 6§ > 0 such thal for each n there is an (n,8) Lree contained in the unit ball
of [f ]\ e L” Let G be the =losed linear span of the union of these (n,§) trees.

Then G is separable since the above union is countable. We claim that there is a

ch L G .
countable setl {fn}n [fA)X e L such that [fn]n

Indeed, since G is separable, we may choose a sequence {Y }n e N G which {is

dense in G. For each Yoo there is sequence (Z )}k of finite llnear combinatlons of
the f, such that Zﬁ")—'Yn as k—oo. Thus for each Y,, there is a countable
subfamily {fi")}kC{f,\},\eL such that Yne[fi")]k. Now ?Jo Y {fi")}nk is a countable

subfamily of {f,},,, and GC[fi")]nk By the results of Sectlon 1, {fi )} k is an
unconditional basic sequence.  Therefore, the subspace | fi )] .k has uncondi tional
basis. Since this subspace is B-convex (reflexive) it is, in view of Theorem 2.2
also super-reflexive. But the unit ball of [fi")]k’n contains the unit ball of G which
in turn contains (n,6) tress for all n.
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