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ABSTRACT. Let E be a Banach space, and let (R,, P) be a probability space.

If LI() contains an Isomorphic copy of LI[o,I] then in LEP() (1 < p < ), the closed

linear span of every sequence of Independent, E valued mean zero random variables has

Inftnlte codlmenslon. If E is reflexive or B-convex and < p < then the closed

(in LEP(R)) linear span of any family of Independent, E valued, mean zero random

variables Is super-reflexlve.
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INTRODUCTION.

Linear spans of sequences of independent real variables have been studied by

several authors. In [1] and [2] H.P. Rosenthal utilized their properties to define a

new class of Banach spaces that has had important applications in the structure theory

of Banach spaces. In this paper we consider subspaces spanned by Banach valued random

variables.

Our notation is the following. (R, r, P) denotes a probability space. E is a

Banach space and denotes expectation. A Banach valued random variable is Bochner

measurable x: R E and for < p < (R), L=P(R) is the space of E valued random

We first state and prove a set of assertions (Lemmas 1.1 and 1.2) regarding

Banach valued random variables whose scalar counterparts are well known. As a

consequence, we obtain that any sequence of independent, mean zero, E valued random

variables, form an unconditional Basic sequence in L(). This enables us to show

that in LPE(R) the closed linear span of any sequence of mean zero random variables has

infinite codimension (Theorem 1.5). Furthermore, using a characterization (due to

R.C. James) of super-reflexivity by infinite trees we show that when E is reflexive or

B-convex, then in LEP(R) (1 < p < (R)) the closed subspace spanned by any family of mean

zero random variable is super-reflexive.

LEMMA 1.1. Let x,y: E be two independent, mean zero random variables. Then
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PROOF. l.et P P denote the distribution functions of x,y respectively.
x y

f dPy(y)
dPy(y) ( Ix+ylIdPx(x))r

] dPy(y) }t](x+y)dPx(X) I}r

dPy(y)l IXdPx + y ]r
f y]]rdPy(y) (]XdPx(X) 0 since B(x) O)

LE 2. Assu X ,...Xn are Independent, E valued, mean zero random

variables. Let {1}ig[gn be any eholce of signs.

PROOF. For any choice of signs {i}igin let Sl= {ili- + I}, S
2 {ili

--I}.
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Then X,Y are independent. Therefore by Lemma 1.1, {.llxll) t/ , <.tlx-,ll)/

.1 I1 I) ’ .1 Ix-l I).
o ’:,11’+1 i’:’) t/’ ’ :":,1 I’:-11’)

.e ,:SI Itxt -,-... "’nXnll pd’)/p ’ 2,:SI Ix -,-... + xnll pdP)zp-
DEFINITION I.I. A sequence (xn) In a Banach space is said to be a basic sequence

if (xn) is a Schauder base for its closed linear span [xn]. A basic sequence (xn) is

called unconditional if, whenever the series Ea x converges, it converges
n n

unconditionally. The following characterizations of basic and unconditional basic

sequences are well known and can be found in [3].

PROPOSITION 1.1. (1) A sequence (xn) is basic if and only if there exists a

number k > 0 such that for all positive integers m and n with m n, and all scalars
m n

"t ..... "n on,, ,,,,,, I1.., ".":11’ 11:., ".":11" ,:,..) ,’, b,,,,t, ,,,,,,1,,hoe ’:"n) "
unconditional if and only if for all sequences of signs (), E a x convergesn n n n
whenever (an is a sequence of scalars such that EanX is convergent.n

LEMMA 1.3. If {Xn} is a sequence of independent, mean zero random variables in

LgP(f) (1 p < (R)) then {Xn} is an unconditional basic sequence.

PROOF. Let {a
n

be any sequence of scalars. Then {anXn} is independent, mean

zo. o , . ,. ,11. xll/ , <,11 ’- xll)’/ e ,n. ,

that _fXn) is basic. Furthermore, if we assume that E anXn is convergent

(in L(fl)) then for any choice of signs {:n and m < n, Lemma 1.2 gives

,:,.,11-,,, ]Sx:ll") t/’’ 2/’(,.,11 : 5x.llP) t/p.
]=m
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pTherefore, n--Zl ’"n’Xn co,vr&es In LE(). Consequently Xn} Is un’ondttonal. We

shall now show Lhat in L()every seqJenve of Independent an zero random variables

spans a .ubpace of infinle codl.Benston. In [3] there Is an elementary proof for the

case p 2 and E R. Our result [s almost Im,nedlale [, crew of the fotlow[n fact

whose proof [ [ [4].

LEMMA 1.4. If F is any Banach space which has ,In unconditional basts then F does

not contain an isomorphic opy of LIfo, [].

THEOREM l.l. Assume (fl, P)Is probability space such that LI()contains an

[so,norph[c copy of LI[0,I]. [f p < -, E ts a Banat’h space and tf {Xn} L()
an independent mean zero seqe,lce then [Xnl, the closed [[near span

of [Xn} [n L[2) has infinite cod[mens[on.

PROOF. It [s easily seen that [[ Ll() contains an [somorphlc copy

of LifO, l] then so does LI()’E Since fl [s a probability space L() Is a dense

subspace of LI(Q) for

p < . Therefore, If [Xn] has finite codlmenslon [a L()then tt has

codinston [n LE(). Thus t suffices to establish the assertion for ().

Suppose that for so independent sequence {Xn} (), [Xn] [s of fin[te

s(say). Let {Yl"’’’Ym be a base for the sbspace complentary to []. en

{Y[,...,Ym,XI,...,Xn...} ts a Schauder base for (e). From the result, in section

I, {Xn} [s an nncondit[onal basic seqnence. erefore, the above described base [s an

Isomorphic copy of LIfO,I].

2. The notion of finite representabillty as welt as the notions of finite and

infinite tree properties were Introduced by R.C. James, ([5], [6]) who also

characterized super reflexivity in terms of infinite trees. We shall give the

definitions and theorems used to obtain our results.

DEFINITION 2. l. A Banach space F is said to be finitely representable in the

Bausch space E if the following condition holds. For every > 0 and any finite

dimensional subspace F0 of F there is an into isomorphism T:F0 E such that

x F0

DEFINITION 2.2. A Banach space E is said to be super-reflexive if every Banach

space finitely representable in E is reflexive.

DEFINiTiON 2.3. Let 0 < 4 2 and let n be a positive integer. An (n,6) tree (in

x21 + x21+l
a Banach space) is a finite sequence (Xl,X2,...,x such that x

i 2
for

2n+l
admissible i, and l}xi-x2i+tll , , llxi-x2i_ll .
The folloIng theorem is due to R.C. James.

TSEOREH 2.1. A Banach space E is super-reflexive if and only if for each > 0

there exists n N such that the unit ball of E does not contain an (n, ) tree.

We also utilize the folloelng definitions and theorems.

DEFINITION 2.4. A Banach space E is said to be B-convex i is not finltely

representable in E.

THEOREM 2.2. Let E be a Banach space with unconditional base. Then the following

are equlvalent:

(1) E is B-convex
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([i) E is relexiw

(iii) E i SUl)er-ref[eivc

A proof of thiq theore,n appears In the lect,lre notes of Woyczynski [7]. It tq know.n

that the property of super-reflexivity is stronger than the property of B-,-onveity.

.o, B-convexlty doe not [ply anti i not implied by ref|exivlty.

{ 1ow Late ,1lid pro’#e olr reSl[t.

TffE)REM 2.]. ssum :_hat E is either a ref[exlve or B-conve Banach space. Let

< p < , and {fA} c L
be a fa,nlly of Independent, mean, zero random variables

|n L(). Then its closed linear span, [f] L
Is super-reflexive.

PROOF. it is known that if E is B-conve (respectively reflexive) then

LP () is also B-convex espectlvely reflexive). Further closedfor < p < , E
subspaces of B-conve (reflexive) spaces are B-convex (reflexive). Suppose

that [f,] L
[s not super-reflexlve. Then by the negation of theorem 2.1, there

is 6 > 0 such that for eacl n there t an (n,5) tree contained in the unit ball

of [fX],k L" Let G be the closed linear span of the union of these (n,5) trees.

Then G is separable [nce the above union is countable. We claim that there [s a

countable set {fn}n {fX}X L
such that [fn In"

Indeed, since G is separable, we may choose a sequence {Yn}n e N
G whl.ch ts

dense in G. For each Yn’ there Is sequence {zn)}k" of finite linear comb[natlons of

the /A such tha Zu)-- Yn as ]c-oo. Thus for each Yn, here is a countable

subfamily )} C {IA}A such that Y. )]. Now U U
n=l

subfamily of {fA}A and G[f")].,}. By the results of Section 1, {f")}.,} is an

uconditional bsic seq.c.cc. Therefore, the subspacc [f")].,} has unco.ditio.al
basis. Since this subspace is B-convex (reflexive) it is, in view of Theorem 2.2

also super-reflexive. But the unit ball of [/")]},. contai.s the .nit iI of G -hich

in turn contains (.,6) tress for a11 ..
REFERENCES

I. .)AMES, R.C. Some Self Dual Properties of Normed Ltnear Spaces, Symposium on
Infinite Dimensional Topology, Annals. of blath. Studies 69 (1972), 159-175.

2. ROSENTIAL, H.P. On the Subspaces of LP(P > 2) Spanned by Sequences of Independent
Random Variables, Israel J. Math. 8 (1970), 273-303.

3. BEAUZAMY, B. Introduction Banach Spaces and Their Geometry, North Holland
Mathematics Studies, 68, 2rid Edition (1985).

4. ROSENTHAL, H.P. On the Span in LP of Sequences of Independent Random Variables
II, Sixth Berkeley Symposium on blath/Stat and Probability, Volume II, 149-167.

5. GELBAUbl, B.R. Independence of Events and Random Variables, Z. Wahr. 36 (1976),
333-343.

6. JAMES, R.C. Superreflexlve Spaces with Bases, Pac. Journ. Math. 41(2), (19/2),
409-419.

7. SINGER, I. Bases in Banach Spaces, Volume I, A Series of Comprehensive Studies in
Math, 154, Sprlnger-Verlag, (1970).

8. WOYCZINSKI, W. Geometry and Martingales in Banach Spaces, II, Independent
Increments, Probability in Banach Spaces, 26-517. Advances in Probability and
Related Topics, Volume 4. Marcel Dekker, (1978).


