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ABSTRACT. This paper is concerned primarily with conditions for semiseparation

separation of lattices. These conditions are expressed in terms of the general

man space.

and

Wall-
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1. INTRODUCTION.
Let X be an abstract set and J’s and , lattices of subsets of X such that ,,cm

If A/B=, A (X,, B implies there exists a C,C such that C)B, and A/C )

then { is said to semiseparate ,i. This notion is important in topological spaces,

where and are specific lattices such as, for example, the zero-sets and the

closed sets.

We investigate this property in terms of associated measures and outer measures

associated with the respective lattices, and also with respective Wallman spaces. This

gives us new conditions for one lattice to semiseparate another, and gives additional

facts pertaining to the measures. These investigations are carried out in sections 3

and 4. In section 2 we give some background material, which ’is fairly standard by now,

and can be found in [i-3]. This material has been added mainly for the reader’s con-

venience.

2. BACKGROUND AND NOTATIONS.

Let X be an abstract set and , a lattice of subsets of X. It is assumed that

),X (:(. We denote by (.(,) the algebra generated by, ;(’(.), the lattice of all

countable intersections of sets from C.
DEFINITION 2.1 , is-

delta lattice (--lattice) if Jis closed under countable intersections.

complement generated if L,I implies L=/’L Ln,’( (where prime denotes comple-. n’
ment).
disjunctive if for xX and LI( such that xLI there exists L2(, with x L2
and LI/ L2=).
normal if for any LI,L2 E.C with LI/L2=), there exist L3,L4:Z with L C. L1/2,
L2CL and L/ L =).

compact if for any collection L. of sets of. with /k.(=), there exists a

finite subcollection with empty intersection.
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countably compact if for any countable collection IL.(lof sets of with (’IL.(:I,
there exists a finite subcollection with empty intersection.
Lindelf if for any collection Lof sets of with #rL,(=IB, there exists a coun-
table subcollection with empty intersection.

T2-1attice if for x,ycX, x#y, there exist L 1,L2( such that xL, y(L and

DEFINITION 2.2 We give now some measure terminology which will be used through-
out. M(,) denotes the set of finite valued bounded finitely additive non-trivial

measures on ((). Without loss of generality may assume throughout that all mea

sures are non-negative. A measure z(M(,C) is called"
-smooth on if for all sequences ILn| of sets of with Ln), (Ln)---,O-
(’-smooth on ((,-.) if for all sequences IAn of sets of (.) with An),
(An) --0 i.e. countably, additive measures on ()).
-regular if for any A(:(:(), /(A)=sup /(L)/L(A, L(,.

In addition we denote by MR(), the set of ,-regular measures of M(,C); F()
the set of -smooth measures on of M(); M’(,I), the set of -smooth mea-

sures on (,) of M(.); M(,.), the set of ,-regular measures of MC).
I(,’),IR(J), (,), (.) are "the subsets of the corresponding M’s which con-

sist of the non-trivial zero-one valued measures.
DEFINITION 2.3 For /w(M(,C), the support ofz is S(/w)=/{L/ZA(L)=z(X).

( is replete iff for any /.I(.), S(/)).
DEFINITION 2.4 A filter in j is a subset of J’, satisfying the condi

tions" I; ’is closed under finite intersections; if A, B(,CL and A(::B

then B .
An ultrafilter in , is a maximal filter in relative to the partial order

on the collection of filters in given by inclusion).
An .’-filter is prime if given A,B . such that AUB then either A-Cr

or B .
There exists a one-to-one correspondence between -filters and elements of

"()= , defined on .LC monotone and (A/B)= (A)-(B), A,B-) defined by

(L)=I iff L(. There exists a one-to-one correspondence between .’-filters
with countable intersection property and (,.,), where (,:)= 7’(,) such

that if ’(Ln)=l all n where Ln,C then Ln# }. There exists a one-to-one co-

rrespondence between all elements of IR(,C) and all .-ultrafilters. There exists a

one-to-one correspondence between all elements of I(J{) and all .-ultrafilters
with the countable intersection property. The correspondence is given by the follo

wing rule" with each .-ultrafilter we associate the zero-one valued measure

defined on () by
if there exists A (, AC.E

/(E)= 0 if there exists A AC.E’.
There exists a one-to-one correspondence between all elements of I(.() and all prime. -filters, given by the following rule" with each /((I() we associate the prime. -filter given by = #A-//(A)=I This correspondence induces a one-to-one

correspondence between prime ,-filters with the countable intersection property and

IS()
REMARK. It is not difficult to see in light of the above correspondences that

is normal iff for each /ml(J), there exists a unique )IR(.C.) such that /’ ()
(i.e. /(L) (L) for all L( ).
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3. SEMISEPARATION.
DEFINITION 3.1 Let ’ be a lattice of subsets of X, let I(,C) and E(ZX

and define /w.’(E)=inf (L’)/ EC-L’ L(.
THEOREM 3.1 Let be a lattice of subsets of X and let /(I(). The follo

wing statements are true:

a) // is finitely subadditive;

b) / IR( iff / =/Ac’ (=);
c) Let /IR(l) and IR(/) such that -<(.’I. is normal iff

/= !(,) for all such / and __
PROOF. a)Since (I(=) it is clear that /x’(E)=inf[_. (L.’.)/ECQL,

/
Liff’["7--

and therefore / is finitely subadditive.

b) For /IR(,C /(A)=inf [/ (L’)/ A(ZL’ L

c) Suppose ,/ (’) Then _<(Z) and since / IR(J() it follows that /=/(=C).
Then </w a ’.. , Suppose is normal, let m6. and suppose that /(A) =0.

Since (IR(,C), there exists L(ZA’, L(;,C, with (L):I. But AIL=) implies

there exist C’,D’ such that AC’, L(ZD’, C’/’D’=), C,D,C. Then we have A(C’C_

cZD(ZL’ and #(C’)<(D)(B)/(L’):O. So, (C’)=O, i.e.Z(A):O, a was

arbitrary in,v then /z= ## on Conversely, suppose that z:/ (,{) with

/ and as before. Let (I(,), /fz}/(IR(,) with /-/(,), -/4z (,).
But /z IR(,i on .’/ so we have ,,’/// on , and ,Z///2 on Z By

/ = z: .’normalthe assumption, /z: and /Zx- on and therefore /z= /4a=i.e
DEFINITION 3.2 Let , be a lattice of subsets of X. The Wallman topology is

obtained by taking all W(L)= /(IR(,)//(L):II, L( as a base for the closed sets

in IR(). IR() with the Wallman topology is called the general Wallman space asso-

ciated with X and J We assume that is disjunctive. Then if A(C(,{), let

W(A)= IIR(,W)//(a)=z I The following statements are true-

a) W(AUB)= W(A)UW(B)
b) W(A#IB) W(A)IW(B)
c) w(a’) W(A)’
d) A:B iff W(A)Z)W(B)
e) (.(W(,I)) W(a (,()).

It is known that W() is disjunctive and that the topologicai space (IR(,),tW()))
is compact and T I and if , is disjunctive it is T2 iff . is normal.

THEOREM 3.2 Let , be two lattices of subsets of X. Suppose that C is

disjunctive and , is normal and consider the restriction map ’ "IR(l) In(,
Then:

a) ’(W2(L2)):/WI(LI)/ L2C_.LI= kl(= k2 (z where WI(L M) and

W2(L 2) are basic closed sets with respect to the Wallman topologies.

b) ! semiseparates (m.
PROOF. a) Since W2(L2)) is closed in W2((), it is compact and since k’ is

continuous, (W2(L2)) is compact. C is normal, so IR() is compact and T2 and

therefore (W2(L2)) is closed. Then ’ (W2(L2))=C,, WI(L]w,), where Ll(=l and since

l. is disjunctive, L
2 _.LI= for all

b) Let L2(( and LI with L2ILI:). Then W2(L2)/W2(LI):), which implies

’(W2(L2))WI(LI)=). For if eWl(LI) and if (:W() with "#(W2(L 2) then (L2)=1
and )(LI):(LI)=I, contradiction. Thus (W2(L2))(WI(LI):). By a) we have then

/ WI(LIK) / L2LI,(, kl=(, (’ WI(LI):). Since WI() is compact it follows
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that WI(LIwz)/L2(ZLldg LIXg(’,IWI(LI)=}. Then L2/.ILI =A , and

ALI= which proves that semiseparates

COROLLARY 3.1 Let be a lattice of subsets of X. Then the following statements
are equivalent:

a) I()=IR(
b) semi separates ()
c) ’d) IR/)=IR()
PROOF. a) b)" () is disjunctive. is normal, since for (I()=IR()

we have ((). Consider the restriction map " IR(())=I(()) IR(
=I(). By Theorem 3.2 it follows that semi separates (). b)c): Let L@;
then L’ (). Since semi separates () there exists A@ L’cA and

AL=, i.e. AL’ Therefore L’AcL’ i.e. A=L’ so
c) d) clearly, d) a)" Let I() and IR(), () and

suppose that (A)=O, (A)=l, A. But (IR(), therefore there exists L’CA,

L wth P(L’)=I, or V(L)=O. Then ( =0 and since A’L, (A’)(L)=O
i.e. (A’)=O, contradiction. It follows that = i.e. I()=IR().

COROLLARY 3.2 Let be two lattices of subsets of X, with normal and

disjunctive. Consider @IR(z) and its restriction @I(). Then ’=’()
iff z semi separates

PROOF. Clearly z always Let L1 and suppose #I)=0" Then LICL
L2(z and (L)=O. By semi separati on there exists L@, L2CL andlLl=.
Then LICL, and LIL, so (LI):O i.e. (L1)=O and 9 =(,). Conversely

suppose =(,). If (L1)=O then P(LI)=O therefore WZ(Ll)=O, LI( since

V =’(). So,’(LI)=O i.e. =’() which by Theorem 3.1 implies IR(Z).
It follows by Theorem 3.2 that z semiseparates

DEFINITION 3.3 Let be a lattice of subsets of X and define

(E)=inf (L)/ EL, L@ ECX.

THEOREM 3.3 Let Cbe two lattices of subsets of X and let @IR(). Then

=/() iff z semi separates

PROOF. ’(L2)=inf (L)/ L2L, L. L . By semi separati on there

exists LI( with L2CLIL. Therefore (L2 (L2) Now suppose (L2 =0.

Then there exists A(, L2A and (A)=O and since @IR(), there exists B,
AB’ and (B’)=O. Therefore Lz(B’ and (B’)=O, hence ’(L2)=O. So =’().
Conversely, suppose that =’() for all @IR(). If does not semisepara-

tes then there exist L2@, LI(, such that L2LI= but =IL1 /

LIL2, LI} has the finite intersection property, therefore there exists

(IR(z) such that (LI)=I for all LI and LI)L2 and (LI)=I. Thus(L2)=l
butj’(L2)=O, contradiction. Hence semi separates

DEFINITION 3.4 Let be a lattice of subsets of X, let (I() and EX and

define "(E)=inf
DEFINITION 3.5 Let be a lattice of subsets of X, let/I() and ECX and

define (E)=inf   (L ),ECOL Li’
REMARK Both " and are outer measures on P(X),clearly. IfeI() but

() then "0. If (IB() then "(). Similar remarks for

THEOREM 3.4 Let z be two lattices of subsets of X such that semise-

parates z Suppose that , is and let @ I(). Then "=, ().
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PROOF. Clearly, II"L_’. Let ol--lattice so that L=Li, L’and let

IR(I). Then /z(L’)=/Z((../ L.)’)=/(L.’.)_</(L.’.) since countably ad.ditive;
therefore /’=/j’. By,,Theorm ’ ’ ’"3.3 it follows /<"=z’=/(2). But since /_/z every-
where, we get #-</ (). Su ppose z(k2)-0 with L2(:, but "(L2)=I. Then

L2 A i, Ai’ and ,(Ai )-O all i. By the ,,-regularity of /. we have AiC_.B
UBi ~and /(Bi)=O. Therefore L2(S:B i, /c(Bi)=O and # (L2)=O, contradiction.

Hence # ="(Y.).
Further related material can be found in [4-6].

4. I-LATTICES

DEFINITION 4.1 A lattice is called an l-lattice if every ,-filter with the

countable intersection property is contained in an -ultrafilter with the countable

intersection property (i.e. for J() there exists z(l()., such that _/e(J)
THEOREM 4.1 If is an l-lattice and replete then is Lindelf.

PROOF. Let 76’(Z). There exists zIR)with I’-_/ (). replete im-

plies S(zz)=L,K//(L )=I , therefore S(/w.)S(I )#). But (,) and then

#’ (eZ/(L)=I} I i.e. is kindelf.

THEOREM 4.2 If = is a countably compact lattice then , is an I-lattice.

PROOF’. Let IL,< o,, be a collection of subsets of X such that .(,,#’I L.( I. Since

Z countably compact, IL,(,’) and then IL,.I, is a filter base which generates

-filter with the countable intersection property, (). We enlarge it toan

an -ultrafilter with the countable intersection property. To ," it corres-

ponds uniquely z IR() and

THEOREM 4.3 If Z is disjunctive and Lindelt}f then , is an l-lattice.

o
PROOF. Let X((a) and let IL,<},((a be a family of subsets of X. Then

IL:<//T(L,()=II I and since is LindelSf,,a/’L.(/l-(L, )=If=S( IIF)I" Let xS(/F) and

consider /zx. Clearly, ./#Zx(,l and #x( ,I) and since ,I is disjunctive, /@IR(,
Therefore /Xx(

DEFINITION 4.2 Let ,Z be a disjunctive lattice of subsets of X and let z IR()
Define ’ on O(We())=W((.,,)) by Z’(W@.(A))=/.(A), A((C(=) where W((A)=#I()/
(A)=I and W@(.)= W((A)/A(C2_()}. Clearly, for A,B((J() the properties a)-e)
that we stated in section 3 are still valid. Note that (l) is a disjunctive lattice.
The following theorem follows directly from the definitions:

THEOREM 4.4 If /IR(,’) then #_IRG’() iff /x ’(I%(W(,{)). (More generally"

if /I(,) then #’;I(W@()) andzIR() iff /’IR(W))).
THEOREM 4.5 If w. is disjunctive then is an l-lattice iff (IR(,(),tW())

is Lindel6f.

PROOF. Necessity- first we show that WO() is an l-lattice. Let T_I().
There exists z I(:’) with Z_/ (). Hence by Theorem 4.4 we have

and z’ (W((()) with /’(W.()). Since , is disjunctive, Wo() is replete

and by Theorem 4.1 it follows that WB() is LindelSf. WI(,)__tW.(,) implies that

twe(,IC) is Lindelf. Sufficiency- tW(() Lindel6f implies that WI(,v) Lindelf and

since W(() is disjunctive, by Theorem 4.3 it follows that W() is an l-lattice.

(w())Therefore for ’(W,_()) there exists (;I such that 7#/(w(,’)): To/

/ R

’ and /’ correspond z) and /IR) such that -/().
THEOREM 4.6 Let =C be two lattices of subsets of X such that is or and

an l-lattice and W’#. is disjunctive. Consider that the restriction "IR(,Iz)---IR)
is closed with respect to Wallman topologies. Then , semiseparates ’_
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here ([2 and (L1):I. But then (L2):l and 9(L1)=l, contradiction snce

@(LI)WLI):. Hence, since , is an I-lattice and disjunctive (because
dsjunctve), by lheorem 4.5 I(),<)s kndelf. ,ow

:W L LI):B and then LI.LI:, where L which island
LgDL2. Hence semi separates z

Here we give conditions which guarantee that is basically closed.
[INIIION 4.3 s countably bounded lattice f for n, n=l,2

and n, there exists gn, n1,2 th ngn and
I[OR[N 4.7 ket be to lattices of subsets of X such that semsea-

rates z, zs -countably bounded and a=t lhen the restriction

() I(Z,) is basically closed.

PROOF. To show that k2)=n,k, k2kl, Clearly

k2kl snce z=t .e. for.any k2z e have k2=kl ,kl.
No let =) (kl ’but k22") lherefore e()R and snce, countably bounded, (). So, (k,)=l all kuk, but (k2)=O. Snce

then (k)=l and I(z), there exists k,k,, k,ea ,,)=1.
ton there exists klff k2k and kMkl=, gut k2k and (k2)=l implies

(kl)=1 an snce also (kM)l all kl t fo1]OS (klkl)=l hch

contradicts that k k
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