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ABSTRACT. Various equivalent characterizations of normality are considered and a
measure theoretic definition 1is given for strongly normal lattices. Measure
conditions related to the space of o-smooth, lattice-regular, 0-1 measures are noted
which iamply, or are equivalent to, the space being Hausdorff, regular, or prime

complete.
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1. INTRODUCTION AND BACKGROUND.

Our concerns in this paper are two-fold. First, we wish to consider in detail
and from a measure theoretic point of view, characterizations of normal and strongly
normal lattices. This is desirable since it 1is more natural when pairs of lattices
are considered, one of which is contained in the other, to consider measure extensions
and restrictions. Also, many results hold equally well for a more general measure

than 0-1 valued measures.

Second, we initiate in some detail a study of reflections of lattice properties
to the Wallman replete space IRU(L) (see below for definitions), and conversely how
properties of this space reflect back to the underlying lattice. This space, except
in special topological cases, has not been throughly investigated and is not as well-

understood as the compact Wallman space IR(L).

We begin with a brief review of the relevant Lattice definitions, and the related
topological spaces involved. Our notation and terminology is consistent with those in
the literature (see e.g. Grassi [1], Huerta [2], Ngbeltng [3], and Szeto [4,5].
Further details concerning IRO(L) can be found in (Grassi [1,7] and Frolik [6], [4])
but these will not be necessary for reading this paper.

2. NOTATION AND TERMINOLOGY.

We shall let L denote a lattice of subsets of a set X and shall assume that the
empty set and X are in L. (L) and o(L) denote the algebra and o-algebra respectively

generated by L. If L is closed under countable intersections then L is said to be
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a 6-lattice. 7L will denote the lattice consisting of arbitrary intersections of
elements of L. L is said to be normal if whenever A,B € L such
that ANB = ¢, there exist C,D ¢ L such that A < C', B < D' and C'/] D' = ¢.

Equivalently, L is normal 1if for all L € L, if L< LI'ULZ' where l.l and L2 € L then

'
= ! - ! . g
1 Az € L such that L AIL A2 and Alt Ll . A2(. Lz L is regular if

for each x € X and A € L such that x ¢ A, there exist B,C ¢ L with x € B', A < C'

there exist A

and B'7iC' = ¢. Similar definitions apply to L being separating and 12, which are
analogous to the topological definitionms, replacigg closed sets with lattice sets. L
is complement generated if for all L e L, L = g An', An € L. L is disjunctive if

for all x € X and A € L with )P’} A, there exists B € L such
that x € B and ANB = &. L is countably paracompact if whenever {An} is a decreasing
4o
sequence of lattice sets in which N An = ¢, there exists a decreasing sequence
n=1
+o
of L' sets {B '} such that A CB ' for all n and 3 B ' = ¢.
n n n n=1 P

1f Ll and Lz are lattices of subsets of X and LlC I.2 then Ll separates 52 if
whenéver A,B € L, such that ANB = ¢, there exist C,D € L, such that ACC, BCD and
cOD = ¢; Llsemisegarates L2 if whenever A ¢ Ll and B ¢ L2 such that ANB = §, there

exists C ¢ [.l such that B C C and ANC = §. If L, separates L, then I.l is normal if

and only if L2 is normal. : 2

M(L) will denote the set of all premeasures on L, and I(L) the set of all 0-l
finitely additive measures defined on A(L). IR(L) will denote the subset
of I(L) consisting of all 0-1 L-regular measures and IRO(L) that subset
of IR(L) consisting of o-smooth, 0-1, L-regular measures. Ia(l') denotes those
measures 1in I(L) which are o-smooth on L. M(L) denotes the set of all finitely
additive measures defined on A(L). Without loss of generality, we assume that
these measures are non-negative. We note that there is a one-to-one correspondence
between filters on L and premeasures on L, between prime filters on L and measures
in I(L), and between L-ultrafilters and measures in IR(L). Furthermore, a prime
filter on L has the countable intersection property if and only’ if the corresponding
measure is in Io(l')' If u € M(L), S(u) denotes the support of u. L is said to be
replete (prime complete) if S(u) # ¢ for all y e IRU(L-w) (u e Io(l.-)).
If u, v € M(L) (or N(L) we will write u < v(L) whenever p(L) < v(L) for all L ¢ L. It
is well-known that if y ¢ I(L) then there exists a v ¢ IR(I.) such that p < v(L).
Also, L is T, if and only if for every u € I(L), S(u) = ¢ or a singleton; L is regular
if and only if whenever u < v(L), p, v € I(L), S(u) = S(v).

A mapping T:X » R, where R is the real numbers with the usual topology, is
L-continuous if T-I(C) € L for all closed sets C of R. Z(L) denotes the lattice of
all zero-sets of L-continuous functions (i.e. Z € Z(L) 1if and only if there exists an
L-continuous function T such that Z = T-l({O})). If X is a topological space,F will
denote the closed sets, 0 the open sets, and Z the zero sets of X. When discussing
the zero sets of a topological space X, we will always assume, without explicit

mention, that X is completely regular.
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For L e L, WL) = (p IR\L)lu(L) =1}, and W (L) = {u e IR"\L) | ww) =1}

ML) = (L) | LeL), and W (L) = (W (L) | L= L) The space L(L), with (L) as
the closed sets (i.e. the Wallman topology) {s a compact, Tl topological space.
If L is disjunctive then IR\L) is T, if and only if L is normal. Also, if L is
disjunctive then IRU(L) is WO(L)—replete and is WO(L)-disjuncttve.

3. ON NORMAL LATTICES.

In this section we consider a variety of new characterizations of normal lattices
from a measure theoretic point of view, as well as consequences of a lattice being

normal. Also, the concept of a strongly normal lattice i{s introduced.

We begin with the following equivalent characterizations of normality. A. Koltun
(unpublished) proved that statements 2 and 3 below are equivalent. We will
essentially use his proof to show that 2 implies 3.

THEOREM 3.1. 1Let v ¢ IR(L) and p € IR(L') where v < p(L'). For any EC X define
v'(E) = inf v(L') and p'(E) = inf p(L') where E € L', L ¢ L. The following are then
equivalent:

'=p' on L.

1. v
2. For each p € I(L), there exists a unique u € IR(L) such that y < ul(L).

3. L 1is normal.

PROOF. (1 implies 2.) Suppose v' = p' on L. Let yu < ”I(L) and p < uz(L)
where y € I(L) and U, Uy € I&L). Then there exists a p € IR(L') such that
p < p(L"). Therefore p < p < ul(L) and p € p < uz(L). Therefore U, = u, on L and
hence up = uye (2 implies 3.) Suppose L is not normal. Then there exists
Al, A2 € L such that Alf\Az = ¢ and H= {B' ¢ L' ' AICZB' or AZCLB'} has the finite
intersection property. Therefore, there exists y € I(L) such that u(B') = 1 for all
B' ¢ H. If B € L such that p(B) = 1 then it follows that Al(\B + ¢ and Az(\B % 6.
Therefore, there exist Ups Uy € IR(L) such that ul(Al) =1, p < ul(L) and
u2(A2) =1, u < pz(L). Clearly u * Uy (3 implies 1.) ‘Suppose
v'(A) = v(A) = 0, A € L. Then v(A') = 1. Since v ¢ IR(L), there exists LCA',
L € L, such that wv(L) = 1. Since L is normal, there exist C,D € L such that Ac
C'¢.D< L'. Therefore, p(C') < p(D) < v(D) = 0 and hence p'(A) = O.
We will now define what appears to be a condition weaker than Ll separates
L2, but we shall show they are equivalent.
DEFINITION 3.1. El partly separates EZ if whenever A,B € Lz
exists C € L, such that A «-C (_B"'.

1
LEMMA 3.1. L1 partly separates L2 if and only if Ll separates L2.

and A C. B', there

PROOF. Clearly, if I.l separates L2 then Ll partly separates LZ'
Suppose Ll partly separates L2‘ Then Ll semiseparates L2. Therefore the
restriction map T:IR(LQ) > IR(LI) is well defined. If L; does not separate L2
then Y is not one-to-one. Let Vi, vy € IR(LZ), be such that v, # vy and
W(vl) = W(vz) =} Since v, + vy there exist A,B € L2 with AN B = ¢ such that
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vl(A) =1, vZ(A) =0, v‘(B) = 0, and vZ(B) =1, Since Ll partly separates LZ’
there exists C ¢ Ll such that A . C <. B'. Therefore, lec) =1 so u(C) = 1.
But p(C) = vz(C) = 0, a contradiction.
We now present a characterization of normal lattices if the lattice is

a 6-lattice.

THEOREM 3.2. Suppose L is a 6-lattice. Then L is normal if and only if the
following two conditions are satisfied:

+o

a) If LeLand if L= N Ln', Ln € L then L ¢ 2Z(L).
n=1

b) Z(L) partly separates L.

PROOF. 1. 1f L is normal then since L is §, a) follows from Alexandroff [8]
(cf. Lemma 7 p. 320.) Also, since Z(L) separates L,Z (L) partly separates L. 2.Z(L) is
normal and since Z(L) partly separates L,Z (L) separates L. Therefore, L is normal.

COROLLARY 3.1. A topological space is normal if and only 1if the following two
condtions are satisfied:

a) Every closed set which is a Gs-set is a zero set.
b) For every closed set F and every open set G such that FCG, there exists a zero
set Z such that F¢ Z¢ G.
PROOF. Follows immediately from Theorem 3.2, letting L = F.
+o
Let J(L) = {v ¢ (L) | if L = ”1 Ls L, L e L then v(L) = inf v(L)}.
n=
We now state a consequence of a normal lattice being complement generated which
generalizes a well-known theorem.
THEOREM 3.3. 1If L is normal and complement generated then py e J(L) implies
M E IR(L).
PROOF. Suppose L is normal and complement generated. Let y € J(L) and let
+ .
LeL ThenL = N L _'where we may assume that Ln&, Ln e L for all n. Since L is
normal there exist R:} Bn € L such that LCZAn' [ BnCZLn' for all n. Since

w € J(L), w(L) = inf u(Bn) = lnf(An'). Therefore u € IR(L).

COROLLARY 3.2. If a Z-filter is prime and closed under countable intersections
then this Z-filter is a Z-ultrafilter with the countable intersection property.

PROOF. Follows immediately from the above theorem and the well~known

correspondence between filters and measures.

The following lemma will be useful in our development of strongly normal
lattices:

LEMMA 3.2. Let HpaM, € I(L). If u A uy € I(L) then either u, < “2(L) or
uy <y (L).

PROOF. Suppose ' I3 uz(L) and u, £ ul(L). Then there exist A,B € L such that
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ul(A) = uz(B) =1 and ul\B) = u,(A) = 0. Therefore yu, A (AU B) = 1. But

n
1 2
u A uZ(A) = A usz) = 0 and hence w Ay, ¢ I(L).
Let I(L) = {r € ML) | if A UB = X; A, B ¢ L then n(A) = 1 or w(B) = l}.
THEOREM 3.4. Suppose I(L) = 1L). Then each of the following is true:
a) 1If p < w(L), p € I(L), m ¢ M(L) then n ¢ I(L).
b) If p < ul\L) and p < uZ\L), Wy sk, € I(L) then My < uz\L) or u, < u]\L).

c) L is normal.
Note: We say that L is strongly normal if L satisfies b).

PROOF. a) Suppose p < w(L) where p € I(L) and m ¢ M(L). Let A B = X,

A,B € L. Then (AU B) =1 and p(AUB) = 1. Therefore pu(A) =1 or u(B) = 1 and
hence n(A) = 1 or w(B) = 1. It follows that n € I(L) = I(L). b) Let y < ul(L) and
u < uz(L), where Wl kg € I(L). Now w A ny € I(L) = I(L). Applying Lemma 3.2

completes the proof. c¢) Follows immediately from b) and Theorem 3.1 noting that if

v, < v2(L), where v € IR(L), then v, = v,_.

1°V2 1~ "2
REMARK 3.1. If X is a topological space and L = Z, then I(L) = I(L).
Therefore, the following well-known corollary is immediate.

COROLLARY 3.3. a) A Z-filter F is prime if and only if F contains a prime zZ-

1

filter. b) Z is strongly normal.

We now show that I(L) = T(L) if L is an algebra.

THEOREM 3.5. Lf L = L' then I(L) = I(L).

PROOF. Let m € I(L) and F the corresponding filter. For each A ¢ L either A
or A' € F since L is an algebra. Let H be an L-filter containing F.
Suppose L e Hand L ¢ F. Then L' ¢ H. But L' ¢ FCH and this 1is a contradiction.
Threfore, F is an L-ultrafilter and hence a prime filter.

REMARK  3.2. If LIC L, and Ll' separates L2' then it can be shown that
any m € I(Ll) can be extended to m, € I(LZ). Such 1s the case for example,
if Ll equals the lattice generated by the regular open sets and L2 equals the open

sets of a topological space X.

4. ON WO(L) AND REGULAR LATTICES.

IR(L) with the Wallman topology has been investigated by many writers. In this
section we investigate measure conditions on IRO(L) which are equivalent to WO(L), or
possibly tWO(L), being Ty, regular or prime complete. We begin with a result
concerning IR(L) which is not generally known.

THEOREM 4.1. Suppose L is disjunctive. Then the following are equivalent:
1. W(L) is normal.
2, W(L) is regular.
3. W(L) is Ty.

PROOF. (1. implies 2.) W(L) is normal and disjunctive and therefore regular.
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(2. implies 3.) W(L) is regular and T, and therefore T,. (3. implies l.) If W(L) is
T, then L is normal. Therefore W(L) is normal.

S_uppose L is disjunctive. If p E-I(L), let ;(WOQA)) = p(A) for all A e A (L).
Then p € I\WOQL)). Conversely, for any p € I(WO(L)) we generate a y € I(L).

We now present a measure theoretic characterization with respect to IRO(L) being
Typ. We begin with a lemma.

LEMMA 4.1. Assume L is disjunctive. Let v € I(L). If ) ¢ 1R°(L) then v € S(p)
if and only if u < v(L).

PROOF. Suppose v € S(u). Then u(L) = 1 » E(wo(L)) =1rveu L) > vl =1,
L ¢ L.

Conversely, suppose p < v(L). ;(WO(L)) =1» p(L) =1» v(L) =1~
v swo(L) *veS(y, LelL

THEOREM 4.2. Suppose L is disjunctive. Then IRO(L) with the Wallman topology is
T if and only if for all u € I(L), if u < vl(!.) and p < vz(l.),

2

where M IRG(L), then V] = Vo

€

2
PROOF. Suppose 1R°(L) is Ty. Then W (L) is T, and hence W (L) is T,. Let

u vy and vy be as above. By Lemma 4.1, Vv, € S(u). Since WO(L) is '1'2, V) = vy
Conversely, assume p < vl(L) and p < vz(l.), where VsV, € IRO(L), implies that

V] = V5. Suppose S(:) * ¢. If VsV, € S(;) then p < vl(l.) and u < VZ(L). Therefore

V] = vg. Thus wc(l.) and hence TWO(L) is Ty

Consider the following condition which we call condition A:
For all upsu, € I(L) such that u < uz(l.), if v ¢ IRGQL) and u < v(L) then
Uy < v(L).

We now show that condition A is equivalent to WG(L) being regular 1if L is
disjunctive.

THEOREM 4.3 Suppose L is disjunctive. Then WO(L) is regular if and only if
condition A is true.

PROOF. Let p ¢ I(L) and u(w (A)) = u(A), A e A(L). Assume W (l.) is regular.
If u) < u2(L) where u ,u, € I(L) then ul< uz(w (L)). Therefore S(ul) = S\uz). The
condition follows by applying Lemma 4.1. Convetsely, one may easily shaw by applying
Lemma 4.1 that if condition A holds then pl < uz(w (L)) implies that S(ul) = S(uz) and
hence Wa(l.) is regular.

We observe that condition A implies that 1if p € I(L) then there exists at most
one v ¢ IRO(L) such that y < v(L). Therefore, applying Theorems 4.2 and 4.3 we have:

COROLLARY 4.1. Suppose L is disjunctive. If WO(L) is regular then WO(L) is T,.

The following two theorems give couditions which guarantee that condition A is
true.

THEOREM 4.4. If I(L) = I(L) then condition A is true.

PROOF. Since I(L) = i(l.), L is strongly normal. Therefore, if u < "2(I') .
upaky € I(L), and if u < wL), ve IRO(L), then either Hy < WL) or
v < "2(1‘)' Since v ¢ IRO(L), uy € v(L).

COROLLARY 4.2. If L is disjunctive and I(L) = T(L) then IRO(L), with the
Wallman topology, is regular.
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PROOF. If I(L) = T(L) then condition A is true. Therefore, NO\L) is regular
and hence rwgu.) is regular.
THEOREM 4.5. 1If L is regular and replete then L satisfies condition A.

PROOF.  Suppose 1 < u,(L), u,u, € I(L) and w < wL), v eI %L). Since L is

R
regular, S\ul) = S\uz) = S(v) and since L 1is replete, S(v) # $. Let x € S(v). Then
v < ux(l.) where My is the measure concentrated at x. But My € IRO(L) and
therefore, v = My Since x € (u2), w, < w(L).

Our next goal is to find a condition which guarantees that condition A on I.l

implies condition A on L, where L ,< L,. We begin with a lemma.

2 1 2
LEMMA 4.2. Suppose LICLZ and Ll separates L2° Let u € I(LI, vel ﬁl.)1
and let o and T respectively be extensions of y and v to (Lz) where

T € IR(LZ). If p < v(Ll) then p < 'r(l.z).
PROOF.  Suppose 1(A,) =0, Az € Lzsince T E€E IR(LZ)' there exists B2 € LZ such
that AZCB and T(Bz ) = 0. Since Ll separates LZ’ there exist A B. € L, such

2 1’ 1 1
that B, CA , A, CB. and Al nBl = ¢ It follows that p(Az) = 0. &

2 1272771

THEOREM 4.6. Suppose LlC. L2 and ['l separates L2. If condition A holds
on I.l then condition A holds on L2'
- o'
PROOF. Let vy < VZ(LZ) where ViV, E I(Lz) and vy < v(l.z) where v € IR (Lz).

Let Hps My and p respectively be the restrictions of Vs v and v to A(I‘l)' Then by

2
condition A on Ll’ Uy < u\Ll). The proof now follows from Lemma 4.2.

Clearly, if L is regular then 1L is regular. The following two theorems consider
conditions which guarantee the converse.

THEOREM 4.7. Assume TtL is regular. Let u < vl(l.), MYy € I(L). If there

1
exist UysV, € I(tL) such that M, and vy restricted equal ] and vy respectively and
if uy < vz(ﬂ.) then L is regular.

PROOF. Clearly if u < vl(L) then S(ul) = S(uz) = S(vz) = S(v]) undetr the above

hypotheses.

THEOREM 4.8, Assume L is normal and L semiseparates TL. Then 1{if 1L is
regular, L is regular.

PROOF. Let sy and vy be as in Theorem 4.7. Letl p € IR(I.) and \) < p(L).
Similarly, let v € IR(rL) and H, < v(1L). Since L semiseparates 1L, v

restricted to A (L) is L-regular and equals ) since L is normal.
Therefore, S(ul) = S(vl).

We now find a measure theoretic condition which is equivalent to WO(L) being
prime complete.

THEOREM 4.9. Suppose L is disjunctive. HU(L) is prime complete if and only if
for all u € Io(l') there exists V ¢ IR c"(l.) such that u < v(L).

PROOF. Follows immediately from Lemma 4.1.

COROLLARY 4.3. Suppose L is disjunctive, normal and countably paracompact.
Then Wo(l.) is prime complete.

PROOF. Let u € Io(l') Since L is normal and countably paracompact, there

exists v e IR U(L) such that u < v(L),
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Finally, we give the following theorem which extends the known measure theoretic
consequence of regular lattices to M(L)

THEOREM 4.10. Suppose L is regular. Let Hps Uy € M(L). If u < “2(L) and

u (X)) = uy(X)  then s(ul) = S(u,).

PROOF. Clearly S(uz)CZS(ul).

Let x € S(ul). If x ¢ S(uz) then there exists L € L such that
uz(L) = uz(x) and x ¢ L. Since L is regular there exist A,B € L such that
x € A', LCB' and B'- A. Therefore, uz(B') = uz(x) = ul(X). Therefore,
ul(A) = ul(x) hence x € A which is a contradiction.

REFERENCES

1. GRASSI, P. On Subspaces of Replete and Measure Replete Spaces, Canad. Math.
Bull. 1 (1984) 27.

2. HUERTA, C. Notions of Compactness on the Lattice and on the Point Set in Terms
of Measure, Ann. Sc. Math., Quebec, 13(1) (1989), 49-52.

3. NOBELING, G. Grundlagen der Analytichen Topologie, Springer Verlang, Berline,
1954.

4. SZETO, M. On Maximal Measures with Respect to a Lattice, Measure Theorey and
its Applications, 1980, Northern Illinois University, 277-282.

5. SZETO, M. Measure Repleteness and Mapping Preservations, Jour. Ind. Math. Soc.
43 (1979), 35-52.

6. FROLIK, Z. Prime Filters with the C.I.P., Comm. Math. Univ. Carolinae, 13(3)
(1972), 553-573.

7. GRASSI, P. An Adjoint Map between Regular Measures and it Applications Jour.
Ind. Math. Soc. 48 (1984), 19-31.

8. ALEXANDROFF, A.D. Additive-set Functions in Abstract Spaces, Mat. Sb., (N.S.) 8
50 (1940), 207-348.




