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ABSTRACT. In this paper, a definition of the fundamental operator for the linear autonomous functional
differential equation with infinite delay in a Banach space is given, and some sufficient and necessary
conditions of the fundamental operator being exponentially stable in abstract phase spaces which satisfy
some suitable hypotheses are obtained. Moreover, we discuss the relation between the exponential
asymptotic stability of the zero solution of nonlinear functional differential equation with infinite delay in
a Banach space and the exponential stability of the solution semigroup of the corresponding linear equation,
and find that the exponential stability problem of the zero solution for the nonlinear equation can be discussed
only in the exponentially fading memory phase space.
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1. INTRODUCTION
We consider the functional differential equation with delay

x = f(t,x,), (1.1)
where x,(0) = x(¢ + 6),-% < 0 < 0, and x takes values in a Banach space E. Because many phenomena in

nature which vary in time can be written in the form of (1.1), the study of (1.1) has been a significant and
interesting subject. Since the 70s, the theory of the functional differential equation with delay has been
developed swiftly, a lot of important results have been obtained (see [1]). However, as stated in [1], most
of the papers dealing with this subject require that E be a finite-dimensional space. Therefore, the case
when E is an infinite-dimensional space must be researched further.

The main motivation for this paper was a desire to take a step in this direction. We investigated the
exponential stability problem for linear or nonlinear functional differential equations with infinite delay
when E is an infinite-dimensional space. A definition of the fundamental operator for the linear autonomous
functional differential equation with infinite delay in a Banach space is given in Section 2, which si the
generalization of the fundamental matrix (see [1, § 3]). In Section 3, we overcame successfully the difficulty
caused by infiniteness of dimension of the space, and obtained some sufficient and necessary conditions
for the fundamental operator to be exponentially stable in an abstract phase space which satisfy some
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suitable hypotheses. Some examples of the phase spaces are given in Section 4. In Section 5, we discussed
the relation between the exponential asymptotic stability of the zero solution of a nonlinear functional
differential equation with infinite delay in a Banach space and the exponential stability of the solution
semigroup of the corresponding linear equation, and found that the exponential stability problem for the
nonlinear equations can be discussed only in the exponentially fading memory phase spaces.

2.  THE DEFINITION AND PROPERTIES OF THE FUNDAMENTAL OPERATOR
anorm in E, and by R, R,, R_ the real, the non-negative

Let E be a Banach space, denote by

real, the non-positive real numbers, respectively. Let B be a linear vector space of functions mapping
|s and satisfies the following

(->,0] into E, and assume that B is a Banach space with the norm
hypotheses:

(H1) Ifbx: (-»,A]—E, A > 0,iscontinuouson[0,A ]andx, € B, thenx, € B andx, is continuous
int €[o,A].

(H2) ||x(0)||s K || x ||5 for all x in B and some constant K.

(H3) There exist a continuous function K(¢) of ¢ = 0, and a function M(¢) which is non-negative,

locally bounded on [0, «) and submultiplicative, that is, M(¢ +s) s M(t)M(s) for ¢,s = 0, such that
% ls= Kt - 0)sup{| x(s) | s 055 =1} +M(t ~0) | 2,

for 0 <t s A and x having the properties in (H1).
or (H1)(H2) and
(H4) Letx,y €EB, and || x(8)||s]| y(8) ]| for a.e. 8 ER., then there exists a constant M, such that
o= M, || y(*) |ls -
We consider the linear autonomous functional differential equation
X(t)=L(x), t>0
[x(e) =®0), O6ER’

flx(+)

(2.1)

where L is a linear bounded operator mapping B into E, ¢ €B.

It is easy to verify that for each ¢ € B, the solution of (2.1) x(¢) = x(t, ¢) exists uniquely for t ER,.
Moreover, by (H1), the solution operators T'(¢), ¢ = 0, defined by

(T(1}9)(6) = x,(6) =x,(6,9) for ¢ EB,

is strongly continuous semigroup of bounded linear operators on B. If L =0, we denote the solution
semigroup by S(¢).

By the arguments similar to the Theorem 4.4 in [8], we have

LEMMA 2.1. There exists a real w, such that exp(A *)b €B for b €E and Re\ > w,, and it is an

analytical function of A.

PROOF. Let

exp(—(t +0))$(0), t+6=0,
(€@~ {q)(t +8), t+0<0,

where ¢(8) € B. Then C(t) is a Cy-semigroup in B. If A(B) is the infinitesimal generator of C(¢)(S(¢)), by
semigroup theory [9], there is w, = 0 such that for ReA > w,,

(R 2)9)(8) - (R(X; 3)9)(0)
- 1[”exp(-%f)(c (1)6)(8)dt - \[wCXP(—N)(S(tW)(G)dl
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- [ " exp(-M)[(C 1)) (8) - (S(1)}0) (O) Mt

- f " exp(=h) (exp(=(t + ) — 1)o(0)dt
-6

_1

M)

Since (H1) implies that the set {¢(0); ¢ € B} coincides with E, we obtain Lemma 2.1.

exp(A8)p(0).

LEMMA 2.2. There exists a constant @ = w, such that (\] - L (exp(\ +)))™" exists for ReA > w, where
L(exp(A +)) is a linear operator from E to E defined by L(exp(A *))b = L(exp(A *)b) forb EE.
PROOF. If (H1) (H2) (H3) hold, by (H3) we have that there exists wy=w,, such that

|l exp(A *)b ||z (b EE) is uniformly bounded for ReA > w,. So, by the boundedness of L and the Banach-
Steinhaus theorem, we get that L(exp(A *)) is uniformly bounded for ReA > w,. If follows that there is a
sufficiently large ® = o, such that (\ — L(exp(A +)))™ exists for ReA > w. If (H1) (H2) (H4) hold, by (H4)

we have
1L Cexph ) [IS|L || | explh Yo lasll L || M, || expledy +)o [l
for Reh = wy and b € E, where w, > ;. According to the same reason as above, we obtain the conclusion.

Set A(A) =M - L(exp(A *)). From Lemma 2.1 and Lemma 2.2, A(A) is an analytic function of A for
Re\ > w,, and A(A) = (M — L(exp(A +)))™ exists for Rel > w.

Define
c+iT
-1 . 1 o
X(0) - J) exp(M)A™ ()N = Lim , j = exp(A)A™ (M)A, (¢ > 0),
1)(t -0);0,(t <0)

where Re ¢ > w, we call this operator-value function the fundamental operator of (2.1).

Using the arguments similar to those in [8], we obtain:

THEOREM 2.3. Let (H1)-(H3) or (H1) (H2) (H4) hold, X(¢) be the fundamental operator of (2.1).
Then

i) There exists real p > w, such that
A = { exp(-M)X(1)dt for Reh= p.
ii) X(¢) is a continuous function of ¢ in [0, ®).

iii) For any € > 0, there exists a C(g) such that
[| X(@) ||s C(e)exp(u + )t for ¢ =0.

3. THE EXPONENTIAL STABILITY OF THE FUNDAMENTAL OPERATOR

The fundamental operator X(¢) is said to exponentially stable if there exist positive numbers G and
r, such that || X(¢) ||s G exp(-rt) for ¢ = 0.

Denote by %, ,(*) the characteristic function of [u,v].

(HS) Xi0(*)p €EB foranyt>0and b EE.
(H5) L(¥;,0f*)b) is well defined for any ¢ >0 and b €EE.
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(H6) The operator-value function L(¥_, o(*)) mapping ¢t €R, into B(E,E), defined by
LOto Db = Litaf ) for b EE,

is left continuous, where B(E, E') stands for the space of all bounded linear operators form E to E.
LEMMA 3.1. Let B satisfy (H1) (H2) (H3) (HS), and (H6) hold. Then
i) For ReA > w (w the constant in Lemma 2.2),

L( [ exp<—~»<{4.q<'>dr) - L0000 [ rof e

ii) The fundamental operator of (2.1) satisfies the equation
X(0)=L(X), >0,
{X(t) =0(t<0), X(0+)=1.
PROOF. By Lemma 2.2, L(exp(A+)b) is well defined for ReA>w and b€EE, and
L(exp(A *)b) = L(exp(A *))b. Thus

L( [exp(—ubqq.oﬂ-)df) = 2 L(exph ).

From (H5), L (exp(—M )Xo *)b) is well defined for t > 0and b € E, and is equal to exp(-As)L (X0 *)b-
By the continuity of L and (H6), we obtain

L( ‘[chp(—N)x[.,'o](’)dt) - [ " exp(-ML (1 o Mts

3.1)

so i) holds.
SetY,(*)b = X,(*)b - % of*)b forb € E, thenby (H1), Y,(+)b € B. Thus, by (H5), L(X,(*)b) is well
defined fort > 0 andb € E. Thereby, by virtue of i) and the definition of the fundamental operator of (2.1),

forany b € E, taking the Laplace inverse transforms of the two sides of A (A)b = %b + ’;L (exp(A *)A'(Mb,
we have

X(t)b =b + I'L(X(s +0)b)ds =b + 1[’L(X,)bds for ¢ >0,
-8

where 8 €R_. It implies X(¢) is the solution of (3.1), so ii) holds.

REMARK. ii) of Lemma 3.1 implies that the fundamental operator is the generalization of the
fundamental matrix defined by (40) and (41) in [1].

THEOREM 3.2. Let B satisfy (H1)-(H3) (H5), (H6) hold, L (exp(A *)) be analytic for ReA > 0 and
continuous for ReA = 0, A™'(A) exist for ReA > 0 and there exist positive numbers W, Q, N and M such that
|K(t)|s W, | M(t) |s Q(K(r), M(t) is the functions in (H3), 1 ER,), || X, ||s N and || L(exp(: +)) ||s M.
Then the fundamental operator of (2.1) is exponentially stable if and only if there is a positive constant €,
such that:

i) A”'(A) can be extended analytically to the half plane ReX > e,
ii) ILlim sup || AT(v +iw)||=0 for v, v, E(-¢,),
= “vl v ‘Vz
iii) For any f EE" (the dual space of E), b EE and v > —&, there is a constant J such that
® | A . J
[ 1o iow)faos ol 7PIB 1P

In order to prove this theorem, we shall use the following well known resuit.
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LEMMA 3.3 |[5, P. 409] Suppose that [~ | f(x)]dx < % and sup{f(x)} < =, and that the Fourier
- *ER

transform f(y) is real-valued and non-negative. Then [*f(y)dy < 2msup{f(x)}.
ey x€ER

The proof of Theorem 3.2. Necessity. In view of Theorem 2.3, there exists a real constant p, such

that

A= l " exp(—-M)X (1)t for Reh> . (.2)

Suppose X(¢) is exponentially stable, that is, there exist positive constants G and r such that

|[X(t)||< G exp(-rt)fort = 0. Then for Re) > —r, the integral on the right side of (3.2) converges absolutely
and defines an analytic function of A in the half plane ReA > —r. It is just the analytic extension of A™(A)
to the half plane ReA > —r, that is, i) holds.

Forany -r <v, <v <v, <,

A +im) = !mexp(—vt)X(t)exp(—iu)l)dt

l exp(—vt)X(t)exp(—t(t+ ) )dt
ol

Hence,

A7 (v +iw)| s%u {Texp(—vt)X(t) - exp(—v(t -g))X(t - —)] exp(—iot)dt l

1] ~ n n .
| [eol-{e-2)(e-2) ex,x-,md,|,
which implies that ii) holds.

Let A=v +iw, v > —y. From (3.2), for any f EE” and b € E, we obtain

A8+ i) = ( [[exmcty iommxoms, [ expiv im)s)ﬂX(s)b)ds)

1

- { ) [exp(—v(r +5))exp(~ialt - 5)) (fX(e)b), f(X(s)b)) dsds
- [ i [ " exploioou) exp(—v(u +25)) (fX(s +u)b), fX()b),duds

- I " expl—icou )F (u)du,

Lo

where (+, *), stands for the inner product of the complex plane,

F(u)= [CXP(—V(M +25)) (f(X(s +u)b), f(X(s)b))ds as u =0,
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and
Fu) - J " exp(—v(u +25)) (X (s +u)b), fX(s)b))ds as u <O.
Foru =20,

|F(u)|s [DGZexM—v(u +2s))exp(-r(u +s))exp-rs) || f || & ||’ ds

=[2(v +r)"'Gexp(-(v +r) || fI[Il & | -

Similarly, for u <0, we have
| F(u)|s[20v +r)"'G?exp((v +r)u) | Il & | -

Therefore, sete =r,J = %, by virtue of Lemma 3.3 we see that iii) holds.
SUFFICIENCY. By i) and ii), we get that
c+il
X(0) - % Lim I " expOu)a™(an (3.3)

is independent of c, for ¢ > —¢.

From the assumptions of this Theorem, we deduce that there is a constant D such that

A" @) |l

D
To %] for Re = 0. 3.4)
By (3.3),
X -—-L|m J' exp(M)A™ (AN -—L. I exp( o)A (iw)dw
T

T, -To
'z‘l,; l exp(iwt)A"(im)dm+-21—n-¥,_i.n: l + f]"""(’“")[nL(exp(uw DA (iw) K.

where Ty = 0 is a constant. Since A™(iw) is continuous and bounded on [Ty, T,], || Gw) 'L (exp(iw +))A™

(iw) || is integrable on [Tp, ®0) and (-, -T,] by means of || L(exp(iw *)) |s M and (3.4), making use of the
arguments similar to those in the proof of ii) of the necessity of this Theorem, and noting that (integrating
by parts)
To LT .
Lim Lim f +I ]EX—;P.(;—Q)‘—)dw-O,

t—=-0T—>o T

we obtain Lim || X(¢) |= 0. Hence, there is a constant D, > 0 such that || X(¢) ||s D,. Thus, by virtue of
t—>®

Lemma 3.1, (H3), | K(t) |s W, | M(t)|s @, and || X, ||s N, we have
IXO 1IN s WL Do+ M 1L 1N 8D, (.
Suppose 0 <p <€, A=-p +iw, b EE,fEE", then by (3.3),

T
exp(pt)f(X(1)b) = ﬁ Lim I explin)f(A™(=p +iw)b ).
T
T
Therefore, thanks to Plancherel formula [10] and iii), we obtain

( " exp(2pt)| fX (YD) dt = % J’ AN p + i) *dw

<J@nte-p) 1A 18] 36
Taking , = 0, then there is ¢, > £, with t, — t, < 1 such that | f(X(£,)b) [>< exp(-2pt, V(e = p )Y || F Al & |I* -
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In fact, if not, that is, for any 1 € [ty £, + 1], | f(X(¢)b) [*> exp(=2pt Y (e — p))™" || £ [} & |, thus,

fexp(zpt)lf(xmb» dt 2 j " exp(2pt) | SX@D) e = (nte - p)) || £ 6 I,

(]

which is in contradiction with (3.6). So, we can choose a strictly increasing number sequence {1, }; with

ty=0and¢,,, -t, < 1 such that
| fX(t,)b)| sJ exp(-2pt,) (e -p) || FIFI B> m =1,2,... (3.7)

Since
K@) = 2Re X WB), XD,
it follows that
|FXKB = | FX @) + 2Re [ (DB, FXEB . (3.8)
For each t ER,, there is an m such thatt €[, ¢, ,,]. Hence, from (3.5), (3.7) and (3.8), we obtain
| /X)) =T exp(-2pt,) (e - p))" || £ I b P
+2D, | Nb | [ | fxcom) e

<J exp(2p)exp(-2pt) (e - p)) || FIll & I

1

. zon{ I.‘exw—ZPerlz{f "exp(2p) | flx(vp Paxy | ]

sJ exp(2p)exp(-2pt) (e - p))"* || F Il & I

VI D, 2 2
+ \/_TME_—I’)CXP(*P'..) (AN
|y o2

+exp(p) exp(-pt) IfIRIB 1P

=

1

o) | VD P (P
LetG -{ m+m} exp( 2). Then
| xem) <G exe(-Z) 0o
and consequently,
1 X(t) s G exp(-%t), (t=0).

This ends the proof of this Theorem.
REMARK 1. IfE is a Hilbert space, then the iii) in Theorem 3.2 can be changed into the following

iii") There exists a constant J such that

J |A™ W +iw) | dw sv—':_—e for v > -¢.
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PROOF. Sufficiency is obvious. Noting that

| 870 +iw) = ( [ oottt [ expt-ts ik x(s s

where (+, *) stands for the inner product of E, by the arguments similar to those in the proof of the necessity
of Theorem 3.2, we can prove the necessity.

REMARK 2. It is clear that if we substitute (H3) with (H4) in Lemma 3.1, the conclusions of this
lemma are also true, and if we substitute (H4) and || X, of(*)b |ls= N || b || (N is a constant, b € E ¢ > 0) for
(H3),|K(t)|s W,|M(t)|< Q and || X; ||s N in Theorem 3.2, the conclusion of this theorem is true also.

THEOREM 3.4. Let B satisfy (H1)-(H3), B a linear vector space (B D B), L a linear continuous
operator from B to E, (H5') and (H6) hold. Let L(exp( +)) be analytic for ReA > 0 and continuous for
Rel 20, A™'(M) exist for ReX 2 0 and there exists M such that || L(exp(A )) ||s M. Suppose X(t) is the
fundamental operator of equation (¢(8) € B)

.X"(l)-LIB(X,), t>0,
{x(e)-«e), 0ER,

and||L(X))||sC sup || X(¢) ||, where C is a constant. Then the conclusions of Lemma 3.1 and Theorem 3.2
1=

(3.9)

hold.

The proof is similar to the proof of Lemma 3.1 and Theorem 3.2, so, we omit it.

According to the arguments similar to those in the proof [8, Proposition 6.4], we can obtain the
following

THEOREM 3.5 Let (H1)-(H3) or (H1)(H2)(H4) hold for B, there exist positive constant C and r
such that L(exp(A +)) can be extended analytically to the half plane ReX > -r, and || L(exp(A +)) ||s C for
any Rel > —r. Then the fundamental operator of (2.1) is exponentially stable if there exists a positive
number r, € (0,r) such that A™*(A) exists in the half plane ReA = -r,.

4. EXAMPLES OF PHASE SPACES

If the space B is defined as in Section 2, i.e., it satisfies (H1), (H2), (H3) or (H1), (H2), (H4), then
we call B a phase space. In this section, we shall give some examples of phase spaces and the operators
which are satisfying (HS), (H6) or (H5"), (H6).

EXAMPLE 1. Let B = {¢(6); ®(B)is a measurable function on R_with i! exp(r6) || #(6) ||” d6 <,

where r > 0 and p = 1, with the norm

1ol [ meo1 60 aof s oo

It is easy to verify that B is a Banach space and satisfies (H1) (H2)-(HS). Suppose L is a bounded
linear operator from B to E, we deduce easily that (H6) holds, the hypotheses of Theorem 3.2 and Theorem
3.5 are satisfied. By virtue of Theorem 3.5, we obtain that the fundamental operator of the corresponding
linear autonomous functional differential equation is exponentially stable if there exists a positive number
r, €(0,r) such that A™(\) exists for ReA > —r,.

EXAMPLE 2. Let B = {¢(8); ®(6) € C(R_,E) the space of all continuous functions from R_to E,

and Lim exp(r8)¢(8) = 0, r > 0}. with the norm
09— -x

llle=_sup exp(r) | ¢(®)||-



FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY 505

Let A, be linear operators from E to E(i = 1,2,...), B(s): R, = B(E,E) is measurable, £, = 0(i = 1,2,...),

and

iil exp(rt,) || A, ||< [Dexp(sr) | B(s) || ds < . @.1)

Set L(x) = .ilA,x(—t,)t‘f)‘”B(s)x(—s)ds for any x(*) EB.

Clearly, B is a Banach space. From (4.1) it follows that L is a linear bounded operator, L and B
satisfy (H1)-(H4), (HS5') and (H6). Furthermore, the corresponding fundamental operator satisfies

X0)= 3 AX(@-1)+ [ "B (t-s)s, 150,
XO0+)=1, X(¢)=0, t<0.

Also by (4.1), we get that there is a constant C such that || L(X,) ||s C sup{|| X(¢) ||, £ 2 0}. It is easy to

verify that the hypotheses of Theorem 3.5 are satisfied. Hence, if there exists a positive number r, € (0,r)
such that A™(\) exist for ReA > -r,, then X(¢) is exponentially stable.
EXAMPLE 3. Let B = {¢(8); ¢(6) is bounded uniformly continuous function from R_ to E}, with

the norm || ¢(+)

5= sup || (8) ||, L is the operator of Example 2 as r = 0.
€R.

Itis easy to prove that L and B satisfy the hypotheses of Theorem 3.4, therefore, X(¢) is exponentially
stable if and only if there exists a positive number € such that i), ii) and iii) of Theorem 3.2 hold.

5. THE NONLINEAR EQUATIONS IN BANACH SPACES
We consider the nonlinear equation

{x(t) =flt.x), t>0,

5.1
x(t) = ¢(t), tER._. 1)
Let f(t,9): R, xB — E is continuous, and for each ¢ € B, the solution x(¢,) of (5.1) exist uniquely for

t ER,. Then
x(t,0) = %(0) + I "fs,x)ds, 150

x(t,9) = &), tER_.

Denote by U(t), defined by (U(t)¢)(0) = x,(6,¢) = x(t +6,¢) for t ER, and 6 ER_, the solution
mapping of (5.1). Let f(¢,0)=0. The solution x = 0 of (5.1) is said to be exponentially asymptotically
stable if there exist positive constants M, and o such that || ¢ ||z< 8 implies || U(¢)¢ [lss M exp(-as).

Set

0,-t<0=<0
©9)(6) - {¢(t +0),0<_p EROERGEB.

If there exist positive numbers C and r such that || t’¢ ||< C exp(-az) || ¢ || for any ¢ €EB and ¢ > 0, then
the phase space B is called to be an exponentially fading memory space, where || ¢ ||= inf{|| ¢ ||z ; Y EB
and (8) = ¢(6) for any 8 € (-, —t]}.

THEOREM 5.1. Let Bbe aphase space and the solutionx = 0of (5.1) is exponentially asymptotically
stable. Then B is an exponentially fading memory space.

PROOF. Since (U(t)0)(8) = ¢(t +6) = (¢0)(8),0 < —¢, for any ¢ >0. Thus for any ¢ EB and
|| & ||z 6, we have
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(I F¢ [~ U (sl U)o [ls= M exp(-au) (¢ 20).
Hence, for any ¢ €B, || T(|| ¢ |5 8) ||.< M exp(~ar). This fact implies

120 1= M8 expl—) | ¢ [,
that is, B is a exponentially fading memory space.
Suppose f(t,x,) =L(x,) +h(t,x,)+g(t), where L is a linear bounded operator from B and
E, h(t,¢): R, x B — E is continuous and satisfies
[[A(t,9)~h(t,p)||sN ||¢-y | for any ¢,y EB, (5.2)
where N is a constant, k(¢,0) = 0, g(¢): R, — E is continuous. Let B satisfy (H1)-(H3) (H5) and (H6) hold.
The linear equation corresponding to (5.1) is

i(t)=L(x), t>0,
{x(t)-¢(t), tER.

According to Lemma 3.1, the fundamental operator X(¢) of (5.3) is the solution of (3.1). Thereby,
X,(*) = T(¢)X,, where T(t) is the solution semigroup of (5.3) and

1,8=0,
X,(8) = {0, 8 <0.

The proofs of Proposition 6.1 and Theorem 6.5 in [8] tell us that
U(4)(8) = x,(8,4) = (T(1)9)(8) + [ " X +0-5)(h(s,%) + g ))ds, £ +020.

(5.3)

Since X(t +8-s)=0ass >t +6,

(U(1)9)(8) = (T(1)9)(8) + ['X.(° =5)(h(s,x,) + g(s)Mds

- (T(X) () + I Tt - 55, %,) + g(s))ds,

i.e, we have

THEOREM 5.2. Let f(t,x,) = L(x,) + h(t,x,) + g(t), L be a linear bounded operator from B to E,
h(t,¢): R, x B — E be continuous and satisfy (5.2), h(¢,0) = 0, g(¢): R, — E be continuous. Let B satisfy
(H1)-{(H3)(H5) and (H6) hold, and x(0, $)(¢) be the solution of (5.1). Then

%(0,6)(8) = (T(1)) (8) + [ "It - s)(h(s,x,) + g(s))ds, t > 0,0 ER,,

x(o’ ¢) (e) - «6)’ 0s<0,
1,06=0

where T(t) is the solution semigroup of (5.3), X = [0 0<0

REMARK. Theorem 5.2 gives actually a variation-of-constants formula.

THEOREM 53. Let f(t,x,)=L(x,)+h(t,x,),L be a linear bounded operator from B to E,
h(t,6): R, x B — E be continuous and satisfy (5.2), h(t,0) = 0. Let B satisfy (H1)--(H3)(HS) and (H6)
hold. Suppose the solution semigroup T'(f) of (5.2) is exponentially stable, that is, there exist M, 8 > 0 such
that || T(¢) ||s M exp(-0¢). If || X, ||s C(C a constant), and CNM <, then the zero solution of (5.1) is
exponentially asymptotically stable.

PROOF. Clearly, the solution of (5.1) exists uniquely.
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From Theorem 5.2, we have
(U©9)®) = (T(1))(8) + I T - s (s, x,)ds,
hence,
108l 709 + [ 1T =5) ][] 5., | ds.
By (5.2) and h(¢,0) = 0, we get || A(¢,¢) ||s N || ¢ ||l . Therefore,
| U@ Iy M exp(-50) || ¢l +CMN 1 exp(=d(t - 5) | U(s)0 [l s,

that is,

exp(dt) || U)o |ls= M || ¢ ||, +CNM I "exp(8s) || U(s)6 [y ds.

According to Bellmen inequality, we obtain
U@ |ls= M exp(=0t) || ¢ || exp(CNM).

So, for || ¢ [[s= @, || U(2)9 ||s= oM exp(—(6 — CNM ). This fact implies that the conclusion of the theorem

holds.
THEOREM 54. Let f(t,x,)=L(x,)+h(t,x,),L be a linear bounded operator from B to E,

h(t,9): R, xB — E be continuous and satisfy (5.2), h(¢,0) = 0. Let B satisfy (H2)--(H3)(HS) and (H6)
hold. Suppose the zero solution of (5.1) is exponentially asymptotically stable, that is, there exist M,d,a > 0
such that || ¢ ||= a implies || U(£) ||lss M exp(-dt). If || X, ||s C (C a constant), and CNM < ad, then the
solution semigroup of (5.3) is exponentially stable.

PROOF. By Theorem 5.2,

(T(2)$)(6) = (U(2)9)(B) - [ T(t - s)Xgh(s,x,)ds.
So,
T8l U8 1o+ [ T =) 12 1 G55 | s,
hence, when || ¢ || 0, we have
17 ly= M exp(-5r) + CNM [ 17 - 5) [ exp(-s)ds.

Since T{(#) is a linear operator, thus

I T s
| T(e) [I= llw%—u Tl

M CNM
5 2
exp(de) | T(2) ||s +t

thereby,

‘[' || T(s) || exp(ds ds.

According to Bellmen inequality, we obtain

|| T(e) ||s%—exp(—6t)exp( CIiM t) =%lexp(-—(6 —-CIZI—M)I),

thus, by CNM < ad, the solution semigroup of (5.3) is exponentially stable and the proof is complete.
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