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ABSTRACT. In this paper, a definition of the fundamental operator for the linear autonomous functional

differential equation with infinite delay in a Banach space is given, and some sufficient and necessary

conditions of the fundamental operator being exponentially stable in abstract phase spaces which satisfy

some suitable hypotheses are obtained. Moreover, we discuss the relation between the exponential

asymptotic stability of the zero solution of nonlinear functional differential equation with infinite delay in

a Banach space and the exponential stability of the solution semigroup of the corresponding linear equation,

and find that the exponential stability problem ofthe zero solution for the nonlinear equation can be discussed

only in the exponentially fading memory phase space.
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1. INTRODUCTION
We consider the functional differential equation with delay

-f(t,x,), (1.1)

where x,(0) x(t + 0),-o < 0 0, and x takes values in a Banach space E. Because many phenomena in

nature which vary in time can be written in the form of (1.1), the study of (1.1) has been a significant and

interesting subject. Since the 70s, the theory of the functional differential equation with delay has been

developed swiftly, a lot of important results have been obtained (see ]). However, as stated in [1], most
of the papers dealing with this subject require that E be a finite-dimensional space. Therefore, the case

when E is an infinite-dimensional space must be researched further.

The main motivation for this paper was a desire to take a step in this direction. We investigated the

exponential stability problem for linear or nonlinear functional differential equations with infinite delay

whenE is an infinite-dimensional space. A definition of the fundamental operator for the linear autonomous

functional differential equation with infinite delay in a Banach space is given in Section 2, which si the

generalization of the fundamental matrix (see [1, 3]). In Section 3, we overcame successfully the difficulty

caused by infiniteness of dimension of the space, and obtained some sufficient and necessary conditions

for the fundamental operator to be exponentially stable in an abstract phase space which satisfy some
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suitable hypotheses. Some examples of the phase spaces are given in Section 4. In Section 5, we discussed

the relation between the exponential asymptotic stability of the zero solution of a nonlinear functional

differential equation with infinite delay in a Banach space and the exponential stability of the solution

semigroup of the corresponding linear equation, and found that the exponential stability problem for the

nonlinear equations can be discussed only in the exponentially fading memory phase spaces.

2. THE DEFINITION AND PROPERTIES or THE FUNDAMENTAL OPERATOR
Let E be a Banach space, denote by II" a norm in E, and by R, R/, R_ the real, the non-negative

real, the non-positive real numbers, respectively. Let B be a linear vector space of functions mapping

(_o%0] into E, and assume that B is a Banach space with the norm II" IL and satisfies the following

hypotheses:

(H1) Ifbx: (-,A E, A > o, is continuous on [o,A ]andx,, lEB,thenx, lEB andx, is continuous

in tlE [o,A ].

<H2) x<0)II K x IL for all x in B and some constant K.

(H3) There exist a continuous function K(t) of 0, and a function M(t) which is non-negative,

locally bounded on [0, o) and submultiplicative, that is, M(t + s) M(t)M(s) for t,s O, such that

Ilx, IK( -o)sup{][ x(s)II; os t} +M(t-o) Ilxo II
for o A and x having the properties in (H1).
or (H1)(H2) and

(H4) Letx,y IEB, and x(0)IIll y(0)II for i.e. 0 IER_, then there exists a constant Mt such that

x(.)1g y(-)ll.
We consider the linear autonomous functional differential equation

L(xt), > 0

x(0)- (0), 0 IER_’ (2.1)

where L is a linear bounded operator mapping B into E, q lE B.

It is easy to verify that for each IEB, the solution of (2.1)x(t)-x(t,) exists uniquely for lER/.

Moreover, by (HI), the solution operators T(t), O, defined by

(T(t)C)(O)-x,(O)-x,(O,) for 9IEB,

is strongly continuous semigroup of bounded linear operators on B. If L -’0, we denote the solution

semigroup by S(t).
By the arguments similar to the Theorem 4.4 in [8], we have

LEMMA 2.1. There exists a real to, such that exp(:k -)b lEB for b tEE and Re. > tot, and it is an

analytical function of k.

PROOF. Let

exp(-(t + 0))(0), + 0 0,(C(t)q)(0)
t + 0), + 0 < 0,

where (0) lEB. Then C(t) is a C0-semigroup inB. If.($) is the infinitesimal generator of C(t)(S(t)), by
semigroup theory [9], there is to 0 such that for ReX >

(n(; ))(0)- (R( ))(0)

i(R)exp(-Lt)(C(t)c#)(O)dt i(R)exp(-Lt)(S(t)(O)dt
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i exp(-Lt)[(C(t)’p)(O)-(S(t)9)(O)]dt

f (R)exp(-a)(exrC-(t + 0))z Z)(O)dt
-0

-. + 1)
exp(0)(0).

Since (HI) implies that the set {9(0); EB coincides with E, we obtain Lemma 2.1.

LEMMA 2.2. There exists a constant oJ o such that (M L (exp( o)))- exists forRe. > oJ, where

L(exp( .))is a linear operator from E to E defined by L(exp( .))b L(exp(-)b) for b E.

PROOF. If (HI) (H2) (H3) hold, by (H3) we have that there exists O.oat.o, such that

exp( ,)b II (b CE)is uniformly bounded forRe > t.Oo. So, by the boundedness of L and the Banach-

Steinhaus theorem, we get that L(exp(. )) is uniformly bounded for Re. > t.o0. If follows that there is a

sufficiently large co z co such that (L/" -L(exp(..)))- exists for Re. > o. If (H1) (H2) (H4) hold, by (H4)
we have

L(exp(L .)b IIll L exp(Z.-)b i[11 L M, exp(o-)b I[

forRe. Oo and b E, where o3 > co. According to the same reason as above, we obtain the conclusion.

Set A(L) L/-L(exp(L .)). From Lemma 2.1 and Lemma 2.2, A(X,) is an analytic function ofL for

Re. > o3, and A-() (L/- L(exp(..)))- exists for Re, > oa.

Define

X(t)-
exp()A-(k)d’ rLi-. - exp()A-’(.)d (t >0),

-T

I, (t 0); 0, (t < 0)

where Re c > e.o, we call this operator-value function the fundamental operator of (2.1).
Using the arguments similar to those in [8], we obtain:

THEOREM 2.3. Let (H1)-(H3) or (HI) (H2) (H4) hold, X(t) be the fundamental operator of (2.1).
Then

i) There exists real Ix > e.o, such that

A-X()= i exp(-Lt)X(t)dt for

ii) X(t) is a continuous function of in [0,oo).

iii) For any e > 0, there exists a C(e) such that

IIx(/) II C(e)exp(vt + 0t for 0.

3. THE EXPONENTIAL STABILITY OF THE FUNDAMENTAL OPERATOR

The fundamental operator X(t) is said to exponentially stable if there exist positive numbers G and

r, such that x(t)I1": G exp(-rt) for 0.

Denote by X,,,,,](’) the characteristic function of [u, v ].

(H5) 74-,,0](’)b B for any > 0 and b tEE.

(H5’) L(xt-,,0](’)b) is well defined for any > 0 and b tE E.
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(H6) The operator-value function L(_,.01(’)) mapping ER/ into B(E,E), defined by

L (Z-,,01(’))b L (Z-,.0(’)b) for b E E,

is left continuous, where B(E,E) stands for the space of all bounded linear operators form E to E.

LEMMA 3.1. Let B satisfy (HI) (H2) (H3) (H5), and (H6) hold. Then

i) For ReX > co (co the constant in Lemma 2.2),

L exp(-Lt)’-.0(’)dt -L(exp(X .))- **exp(-Lt)L(z4_.01(-))dt.

ii) The fundamental operator of (2.1) satisfies the equation

i"(t) ;(x,), t,,0,
(3.)

x(t) 0(t 0),

PROOF. By Lemma 2.2, L(ep(X.)b) is well defined for ReX>co and b.E, and

L (ep(X .)b)- L(ep(X .))b. Thus

From (H5),L(exp(-Xc)X_,.ol(O)b)is well defined for t, 0 andb _E, and is equal to exp(-)L(X_,.ol())b.

By the continuity ofL and (H6), we obtain

so i) holds.

Set Y,()b X,(o)b _,.01(-)b forb E, then by (HI), Y,()b B. Thus, by (H5),L(X,()b)is well

defined for > 0 and b E. Thereby, by virtue of i) and the definition of the fundamental operator of (2.1),
for any b E, taking the Laplace inverse transforms ofthe two sides ofA-(X)b [b /L
we have

X(t)b-b+ f L(X(s+O)b)ds-b+ I L(X,)bds fort>0,
-0

where 0 ER_. It implies X(t) is the solution of (3.1), so ii) holds.

REMARK, ii) of Lemma 3.1 implies that the fundamental operator is, the generalization of the

fundamental matrix defined by (40) and (41) in [1].

THEOREM 3.2. Let B satisfy (1-11)-(1-13) (H5), (1-16) hold, L(exp(X -)) be analytic for ReX > 0 and

continuous forReX O, A-I(X) exist forReX > 0 and there exist positive numbers W, Q, NandM such that

Ig(t)l W, In(t)lQ(g(t), M(t)is the functions in (H3), tR+),
Then the fundamental operator of (2.1) is exponentially stable if and only if there is a positive constant

such that:

i) A-I(X) can be extended analytically to the half plane ReX > -e,

ii) Lira sup a-’(v + io,)II- 0 fo v,,v= (-, ),
I--.**,,t

iii) For any fE E" (the dual space of E), b EE and v > -e, there is a constant J such that

f(A-l(v + ico)b)lZ dco [If I111 b

In order to prove this theorem, we shall use the following well known result.
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LEMMA 3.3 [5, P. 409] Suppose that f(R)]f(x)]dx < oo and sup{f(x)} < o% and that the Fourier
R

transform ](y)is real-valued and non-negative. Then f(R)f(y)dy 2nsup{f(x)}.
R

The proof of eorem 3.2. Necessity. In view of eorem 2.3, there exists a real constant g, such

that

A-0 " (R)exp(-Xt)X(t)dt for ReX > it. (3.2)

Suppose X(t) is exponentially stable, that is, there exist positive constants G and r such that

11X(t) 11< G exp(-rt) for a 0. Then forReX > -r, the integral on the right side of (3.2) converges absolutely
and defines an analytic function of X in the half plane ReX > -r. It is just the analytic extension of A-I(X)
to the half plane ReX >-r, that is, i) holds.

For any-r <v < v < v < o%

Hence,

A-l(v "4" io) I (R)exp(-vt )X(t exp(-itot)dt

--f(R)exp(-v(t-))X(t-)exp(-iot)dt.

A-l(V + ir.o)[[ < i(R)[exp(-vt)X(t)-exp(-v(t-))X(t-)l exp(-iot)dt

which implies that ii) holds.

i"exp(-v(t-))X(t-) exp(-iot)dt

Let X- v + ito, v > -y. From (3.2), for any f E* and b tE E, we obtain

If(A-(v + i)b)l exp(--(v +ito)t)f(X(t)b)dt, exp(-(v +ioo)s)f(X(s)b)ds

exp(-iom)exp(-v(u + 2s))(f(X(s + u)b), f(X(s)b))iduds

f(R)exp(-itou)F(u)du,

where (., -)1 stands for the inner product of the complex plane,

F(u)= i exp(-v(u +2s))(f(X(s +u)b),f(X(s)b))ds as u
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F(u)- f exp(-v(u + 2s))(f(X(s +u)b),f(X(s)b))tds as u <0.

F(u) (R)Gexp(-v(u + Zs))exp(-r(u + s))exp-rs)II/1111 b II" s

-[2(v + r)]-’G exp(-(v +r)u)ii f i111 b
Similarly, for u < 0, we have

IF(u) I [2(v + r)]-Gex(v + r)u)II I111 b
G

Therefore, t e r, J , by virtue of mma 3.3 we see that iii) holds.

SUFFICIENCY. By i) and ii), we get that

f
*’r

ex)A-( (3.3)

is independent of c, for c >-e.

From the aumptions of this eorem, we deduce that there is a constant D such that

D-)II
+ Il

for g 0. (3.4)

By (3.3),

i
’r

imrX(t)- ex)A-(Xk- exi)A-(i
T

where T 0 is a constant. Since -(im) is continuous and bounded on [-TT (im)-L(exim "))-

(i) i integrable on [T) and (-,-r,] by means of L(exNim -))I1 and (3.4), making e of he

arguments similar o those in the proof of ii) of the necessity of this eorem, and noting ha (integrating
by s)

im + 0,

we obtain Lim IIx(t)II-o. Hence, there is a constant Do>0 such that IIx<t)IIDo. us, by virtue of

Lemma 3.1, 3), IK(t)I W, IM(t)I Q, and IIXo IIN, we have

<t)I1-1 L(<’))I1 W IlL IIDo +M IlL IIN D, <3.5)
Suppose 0 <p <e, k--p +i, b E,fE’, then by (3.3),

extff(X(t) exNiff(-(-p + im)b.
Therefore, thanks to Plancherel formula [10] and iii), we obtain

J( p))-’ lll bll . (3.6)

Taking to 0, then there is t > to with t- to s such that lf(X(fi)12 ex-2pt(e p))- I111 b
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In fact, if not, that is, for any [to, t0 + 1], If(S(t)b)12> exp(-2pt)J(rt(e-p))-l f [I-ll b If-’, thus,
to+l

i exp(2pt)l f(X(t)b)l 2dt I exp(2pt)l fCXCt)b )l 2dt J(t(e p))-’ f I111 b ,
which is in contradiction with (3.6). , we can choose a strictly increasing number sequence {t=} with

0 and t..-t= x such that

If(x(t.)b)l d exp(-2pt,)((e _p))-I fllll b , m 1,2 (3.7)

Since

it follows that

d

d-l f(X(t)b )12 2Re(f(,Y((t)b ), f(X(t)b ))1,

fCxCt)b)l fCxCt.)b)l + 2Re f,. (X(t)b), f(xCt)b

For each R/, there is an m such that [t,, t.,/l]. Hence, from (3.5), (3.7) and (3.8), we obtain

If(x(t)l j exp(-2pt,,,)(e _p))-i f IIll b I:

(3.8)

+ 2D, [ b i/(X())I

and consequently,
/n\

IIX(t)II<G exp--t), (t 0).

This ends the proof of this Theorem.

REMARK 1. IfE is a Hilbert space, then the iii) in Theorem 3.2 can be changed into the following

iii’) There exists a constant J such that

A-’(v + ico)II do, for v > -e.
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PROOF. Sufficiency is obvious. Noting that

-’( + ico) I1’-= ep(-0: +ico)t)X(t)dt, exp(-(v +ico)s)X(s)ds

where (-, -) stands for the inner product of E, by the arguments similar to those in the proof of the necessity

of Theorem 3.2, we can prove the necessity.

RE1WhRK 2. It is clear that if we substitute (H3) with (H4) in Lemma 3.1, the conclusions of this

lemma are also true, and if we substitute (H4) and .0K-)b ILN IIb (v is a constant, b E E, > 0) for

(H3), [K(t)1 W, [g(t)l< Q and IIx0 IIN in Theorem 3.2, the conclusion of this theorem is true also.

THEOREM 3.4. Let B satisfy (H1)-(H3),/ a linear vector space (/ D B), L a linear continuous

operator from/ to E, (HS’) and (H6) hold. Let L(exp(X .)) be analytic for ReX > 0 and continuous for

ReXz 0, A-(X)exist for ReXz0 and there exists g such that (=xp0,-)) IIg. Suppose X(t)is the

fundamental operator of equation (q(0) EB)

:(t)= l, (x,), > o,
(3.0)

x(O)- 0), on_,

and L<X,)II C sup X(t> ll,"here C i a constant. "I’hn the cocluion of Lemma 3.1 and Theorem 3.2
t,0

hold.

The proof is similar to the proof of Lemma 3.1 and Theorem 3.2, so, we omit it.

According to the arguments similar to those in the proof [8, Proposition 6.4], we can obtain the

following

THEOREM 3.5 Let (H1)-(H3) or (H1)(H2)(H4) hold for B, there exist positive constant C and r

such that L(exp(X .))can be extended analytically to the half plane ReX>-r, and (,xp0, .))II c fo

any ReX >-r. Then the fundamental operator of (2.1) is exponentially stable if there exists a positive
number r E (0,r) such that A-(X) exists in the half plane ReX -ft.

4. EXAMPLES OF PHASE SPACES
If the space B is defined as in Section 2, i.e., it satisfies 011), (H2), (H3) or 011), (H2), (H4), then

we call B a phase space. In this section, we shall give some examples of phase spaces and the operators

which are satisfying (HS), (H6) or (HS’), (H6).
EXAMPLE 1. LetB {q(0); q(0)is a measurable function oaR_with f,exp(r0)II <0)II" do < (R),

R_

where r > 0 and p a: 1, with the norm

o IL- exp(r0) 0:0)I: dO / <0)11.

It is easy to verify that B is a Banach space and satisfies (I-I1) 2)-5). Suppose L is a unded

linear operator omB m E, we dedu easily at6) holds, e hypothes ofeorem 3.2 and eorem
3.5 are tisfied. By viue ofeorem 3.5, we tain ate ndamental operator ofe coffesponding

linear autonomous nctional differential equation is exponentially stable if ere exis a sitive number

rt (0, r) such at A-(X) exis for Re > -r.
E2. tB {0); 0) C(R_,E) the space of all continuous nctions om R_ m E,

and Lim exr00) 0, r > 0}. with e no

sup exp(r0)
.-<0,-0
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Let A, be linear operators from E to E(i 1,2 ),B(s): R/ B(E,E) is measurable, ti O(i 1,2 ),

and

Y exp(rt’)l[A’ I1< i exp(sr)lln(s)llds <" (4.1)
i-1

SetL(x)- 2x(-,)/F(sx(-s for any x(,)B.
i-I

Clearly, B is a Banach space. From (4.1) it follows that L is a linear bounded operator, L and B
satisfy (H1)-(H4), (H5’)and 0-16). Furthermore, the corresponding fundamental operator satisfies

Iy((t)" i-xA’X(t -ti)+ i’B(s)X(t -s)ds, t>O,

IX(0 +) 1, X(t) O, < O

Also by (4.1), we get that there is a constant C such that IlL(X,)IIc sup{llx(/)II, to}. It is easy to

verify that the hypotheses of Theorem 3.5 are satisfied. Hence, if there exists a positive number rl E (0,r)
such that A-I(:L) exist for Re), > -rl, thenX(t) is exponentially stable.

EXAMPLE 3. Let B {q(0); q}(0) is bounded uniformly continuous function from R_ to E}, with

the norm q}(’)l" sup (0)II,Z is the operator of Example 2 as r 0.
OR_

It is easy to prove that L andB satisfy the hypotheses ofTheorem 3.4, therefore, X(t) is exponentially
stable if and only if there exists a positive number e such that i), ii) and iii) of Theorem 3.2 hold.

5. THE NONLINEAR EQUATIONS IN BANACH SPACES
We consider the nonlinear equation

,(t) f(t,xt) > O,
(5.1)

x(t)- C(t), ER_

Let f(t,q}): R/B E is continuous, and for each q} B, the solution x(t, q0 of (5.1) exist uniquely for

R/. Then

(t, ) (}(0) + f(s,xs)ds, > 0

[x(t, l) t), _R_

Denote by U(t), defined by (U(t))(O)-xt(O,c#)-x(t +0,q) for tER/ and 0 tER_, the solution

mapping of (5.1). Let f(t, 0) 0. The solution x 0 of (5.1) is said to be exponentially asymptotically
stable if there exist positive constants M, 6 and ct such that q} IIn< 6 implies

Set

0,-t<0-:0(q})(0)-
q}(t +0), O-t’t R/,OR_,c#B.

If there exist positive numbers C and r such that x’# I1,< c xp<-at)II I1 for any q}B and > 0, then

the phase space B is called to be an exponentially fading memory space, where II,-iqll w II wB
and ap(0) (0) for any 0 E (-oo,-t]}.

THEOREM 5.1. LetB be a phase space and the solutionx 0 of(5.1) is exponentially asymptotically

stable. Then B is an exponentially fading memory space.

PROOF. Since (U(t)9)(O)=t(t +O)-(x’9)(O),O<-t for any >0. Thus for any tEB and

II, I[ , we have
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"d I[,-[[ U(t) {I,1] U(t [sM exp(-at) (t 0).

Hence, for any B, e(ll Ih3 ){I,M ex). is fact implies

that is, B is a exponentially fading memo space.

Suppose f(t,x)-L(x)+h(t,x)+g(t), where L is a linear unded operator om B and

E, h (t, ): R. xB E is continuous and tisfies

IIh(t,9)-h(t,W)llNll-Wlb for any 9,B, (5.2)

whereNis a constant, h(t, 0) 0, g(t): R+ E is continuous. tB tisfy 1)-3)5) and 6) hold.

e linear equation coesponding to (5.1) is

> 0,
(5.3)

x(t) t), R_.

According mma 3.1, e ndamenml operator X(t) of (5.3) is e lution of (3.1). ereby,

(.)- T(t where T(t) is e lution mioup of (5.3) and
I, 0-0,

e proofs of Proposition 6.1 and eorem 6.5 in [8] tell that

(u(l(l (r(l(l. (. s)((s,x.),g(s

(r(t)(). r( s(h(s,x.l, g(sl,

i.e, we have

0.. (t,x) L() . h(t,x) + g(t), be a linear bounded operator om B m E,

h(t, ): R.B E be continuous and tis (5.2), h(t, 0) 0, g(t): R.
1)-)5) and 6) hld, and x(O, O)(t) be e lution of (5.1).

x,(0, 0) () (r()() r(t-s((s,x.)+g(s),t.o,R_,

I,
where T(t) e mlution miNupf (5.3), X, 0, 0"

Theorem 5.2 gives actually a variation-of-constants formula.

TItEOREM 5.3. Let f(t,xt)-L(xt)+h(t,xt),L be a linear bounded operator from B to E,

h(t,):R/B E be continuous and satisfy (5.2), h(t,O)-O. Let B satisfy (H1)--(H3)(H5)and 0-16)
hold. Suppose the solution semigroup T(t) of (5.2) is exponentially stable, that is, there existM,/5 > 0 such

that T(t)II’n Xl-&). If IIX0 I1 C(C a constant), and CNM < 6, then the zero solution of (5.1) is

exponentially asymptotically stable.

PROOF. Clearly, the solution of (5.1) exists uniquely.
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From Theorem 5.2, we have

(u(t),) (o) (T(t),)(0) + T(t s)Xoh(s,x,)ds

u(t) I111 T(t),)I1 + i T(t s)II h(s,x)II ds.

By (5.2) and h(t, 0) 0, we get h(t, )[1<N q [Is. Therefore,

U(t ]M exp(-6/)II I1 /CMN I exp<-:t-s)) g(s) I1 d,

that is,

exp(/) u(t II.g I1 +CNM exp(6s) U(s) I1 ds,

According to Bellmen inequality, we obtain

u(t) I1M ex-S/)II * I1 exCNMt).
So, for 1 U(t1 ex-(5-CNM)t). is fact implies that the conclusion of the theorem

holds.

THEOM 5.4. t f(t,x,)-L(x,)+h(t,x),L be a linear bounded operator from B to E,

h(t,):R+ xB E be continuous and satisfy (5.2), h(t,0)- 0. t B tisfy 2)-H3)5) and 6)
hold. Suppose the zero solution of (5.1) is exponentially asymptotically stable, that is, there existM, 5, a > 0

such that I implies U(t IM ex-6t). If x0 I1 c (c a constant), and CNM < 6, then the

solution semigroup of (5.3) is exponentially stable.

PROOF. By eorem 5.2,

(r(t),)(o)- (u(t),)(o)- r(t s(s,x.

So,

T(/) IIll U(t) II / T(t-s)ll [IXoll IIh(s,xOII ds,

hence, when II a, w have

T(t) IIsM exp(-6t)+cgg f T(t-s) exp<-.

Since T(t) is a linear operator, thus

thereby,

.11T(tT(t)I1-,, II

exp(6t) T(t) g CNM i’+ T(s) exp(s)ds.

According to Bellmen inequality, we obtain

thus, by CNM < ag, the solution semigroup of (5.3) is exponentially stable and the proof is complete.

ACOWLEME. We are Nateful to our advir Profeor F. L. Huang for his generous

guidance.
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