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FBSTKACT. Tn this paper, using a simple and classical application of the Leray-Schauder
degree theory, we study the existence of solutions of the following boundary value

problem for functional differential equations

x"(E)+£(t,x ,x'(¥)) =0, te€ [o,1]
x0+ax'(0) =h
x(T)+Bx'(T) =n

where f € C( [b,T]XCPXRn,Rn ), hGCP, nGIRn and a,B are real constants.
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1. INTRODUCTION
Let R" be the real euclidean space with inner product <:,-> and norm II Let also,
Cr- be the space of all continuous functions x : [-r,0] ->1Rn, r>0, endowed with the
sup-norm
[Ixl] =sup{|x(t)] : t e [-r,0]}.
For every continuous function x : [—r,T] +IR", T>0 and every t € [O,T] , we denote by Xy the

element of Cr defined by
% (9) =x(t+9), o€ [-r,0].
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The main purpose of this paper is to discuss when the functional differential
equation

X"(E) (%, x" (1)) =0, cvelo,r], (1.1)

admits a solution x on [O,T] such that the boundary value conditions
x0+ax'(0) =h (1.2a)
x(T)+Bx'(T) =n (1.2b)

< e ;| n n o, . .
to be satisfied. Here, f : [O,TJXCK‘X]R +IR  is a continuous function, h ecr, n em“ and
a,B are real constants such that

a<0<8 (1.2¢)

By x'(0) and x'(T) we mean x'(0%) and %(T"), respectively. In the next, the boundary
value problem (B.V.P.) which constitutes from the equation (1.1) and the boundary
conditions (1.2a),(1.2b),(1.2¢c), will be mentioned briefly as B.V.P. (1.1)-(1.2).

Analogous boundary value problems for ordinary differential equations has been
studied by many authors, who used the Leray-Schauder continuation theorem (see Lasota
and Yorke [1], Szmanda [2], Traple [3] and others). Usually, in these problems the
authors derive a priori estimates of solutions by using inequalities of Wirtinger and
Opial type.

Our work is motivated by the recent papers of Fabry and Habets [!c] , Fabry [5] and
Ntouyas [_G] In [6] the author generalizes the results of Fabry and Habets [H] to the
functional equation (1.1) with boundary conditions

%, =h, h(0)=0,
x(T) = 0.
Here, following Fabry [5] we extend the results of Ntouyas [6]
2. MAIN RESULTS

Before stating our main results we refer some lemmas which simplify the proof of
the theorem bellow.

LEMMA 2.1. [4, pp 187]. Let X be.a Banach space, A : X*X be a completely continuous
mapping such that I-A is one to one, and let f be a bounded set such that 0 € (I-A)(Q).
Then the completely continuous mapping S : 2+ X has a fixed point in Q if for any Are(0,1),
the equation

x = ASx+(1-1)Ax (2.1)
has no solution on the boundary 98 of Q.

LEMMA 2.2. [5, PP 133]. Let X : [0 ,T] +R" be a twise differentiable function and

let R>0 be such that

Izl < R (2.2)
Assume that positive constants c,d exist, with c <1, such that
—<x(t),x"(0)> <elx' (1) %+d, te[o,1]). (2.3)
: 2
Moreover, assume that positive constants c',d' exist with c' <(1-c) /B8R such that
[<x'(£),x"(£)>] < (e' |x' () | 24aD) [x'(0) ], te[o,T]. (2.4)
Then there exists. a number K nondepending on x, such that
Iz ()]l < x.

LEMMA 3.2. If a <0<B the B.V.P
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") =kx(t), k>0
%x(0)4ax'(0) =0, x(T)+Bx'(T) =0
has the unique solution x =0.
PROOF. The general solution of the above equation has the form

o ke -kt
«(t) Tece teye .

On account of the above boundary conditionc we obtain

(1ra/k)(1-g/k) 2/ T
e (I-ark)(1vgvk) 7 € :
kT

Since e >1, k>0, the last expression is truc for every k >0, provided the left hand
side is less than or equal to one. But this is clear since a<0<8 .

The next Theorem guarantees existence of solutions for the B.V.P. (1.1)-(1.2) which
are bounded by an a priori given function ¢. Moreover, the first derivative of a such
solution is also bounded by a constant p not depending on this solution,

THEOREM. Let £ : [0,T] xchIRn be a continuous function which maps bounded sets of
[:O,T]XCerRn into bounded sets of R'. Assume that ¢ : [0,T] »(0,») is a twice continuously
differentiable function such that

-9(0)-lal 9'(0) > [h(0)|, if a#0

p(0) > Ih(0) |, if a=0 (2.5q)
and
—o(T)+|6} o'(T) >|n|, if B#0
() > |nl, if B0, (2.58)
Also, we suppose that
e(L)e" (L) +<u(0) 1 (L,u,v)> <0 (2.6)

for any (t,u,v) € [O,T‘JXCPx}Rn with o(t) =|u(0)] and <u(0),v>=|u(0)|e'(t).
Moreov~r, assume that there exist pouitive numbers kl’k') with k1 <1 and positive

S 1 ) 1
numbers kl ,k,‘.7 with

k'<—l~(l—kl)2,m= max _|o(t) |

1 8m tGLO,T]
such that
<u(0),f(t,u,v)>=§.k1|v|2+k2, (2.7)
v, £(x,u,v)>] <O v 2 lv] - (2.8)

for any (t,u,v) € [o,'r]xcrxm“ with Ju(0)] <e(t).
Then the problem (1.1)-(1.2) has at least onc solution x such that [x(t) | < 9(t),
ve[0,7] and |x'(t)] <p, tef0,T]. _
PROOF. Let k >0 be a constant, such that k >max '{‘%‘((% , t€ [0 ,T]} and x a solution
of the equation
x"(t)ﬂf(t,xt,x'(t))=(1—x)kx(t), A €(0,1) (2.9)

with te [0,T] and [x(t)]| <9(t).
Multiplying both sides of (2.9) by x(t) and using (2.7) we deduce that

-<x(t),x"(t)> = A<>:t(0),f(t,xt,x'(t))—(l-x)klx(t) |2

2
Sk [ ()| Tky)



512 S.K. NTOUYAS AND P. CH. TSAMATOS

12
1
< k1|x () "4k,

Similarly, condition (2.8) yields
|<x'(t),x"(t)>|;(ki|x'(t)|2+k5)ix'(t)!+k|x'(t)|m

<0 x40 [ (0)
where c = k'2+km.
Thus the conditions of Lemma 2.2 are fulfilled and hence there exists a number K
not depending on x, such that |x'(t)] <K.
Let us now consider the Banach space B of all continuous functions x : [O,T] *]Rn,

which are continuously differentiable on [_0 ,T'], cndowed with the norm

lxll=max { sup Ix(o)l, sup Ix'(©)]}.
he[o,ﬂ tefo,T I
Also, for any x €B we set
T .
sx(t) =Jf 6(t,8)f(s,x_,x"(s))ds +£l [(T-t)h(0)+Bh(0)-an+tn], t€ [0,T]  (2.10a)
0
where
l' x(s+9), if 92 -s
xs(e) = (2.108)
1h(s+8)-ax'(0), if 9 <-s,

Here, G is the Green function for the B.V.P.
yn =0
y(0)+ay'(0) =0, y(T)+By'(T) =0

and is given by the formula

['(t-T-B)(s-u) , SXT
1

G6(t,s) =~i
I(t-u)(s-T-B), t<s,

where £ =T+8-a #0 because of (1.2¢c).

Obviously, the operator S is a compact operator defined on B and taking values in B.
Since the B.V.P. (1.1)-(1.2) is equivalent to (2.10a) and (2.108), the purpose of

the following proof is to show that the mapping S has a fixed Point.

To this end we define an operator A : B*B,and a subset @ of B as follows:

T
(Ax)(t) =—J G(t,s)k x(t)dt, k 70 (2.11)
0
and
a={xeB:¥te|0,T], [x(t)]| <olt), |x'(t)] <K+1}, (2.12)

where k and K are defined as above.
It is clear that @ is open and bounded in B and A is a completely continuous operator
First we prove that the operator I-A is one to one. Let (I-A)x =(I-A)y. If
z(t) =x(t)-y(t) then (I-A)z =0 and z(0)+az'(0) =0, z(T)+pz'(T) =0. Hence, z is a solution
of the B.V.P.
z2"(t) =k z(t)
z(0)+az'(0) =0
z(T)+8z'(T) = 0.
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By Lemma 2.3 the last problem has the unique solution z =0, and consequently I-A
is one to one.
Hext, we show that for any A€ [0,1] and x €92 it is the case that
x # ASx+(1-1)Ax
Indeed, if there exists A€ [0,1] and x €39 satisfying
x = ASx+(1-A)Ax,

then the equation

x"(t)ﬂf(t,xt,x'(t)) = (1-M)kx(t),
has a solution x: [0,T] >R satisfying

' =
X tax (0) =h

x(T)+B8x'(T) = n (2.13a)
xeq. (2.138)

Hence there exist §,r€{0,T] such that either
IX(€)| = @(&) or Ix'(p)l =K+1. (2.14)

Now, we shall prove that, in view of (2.13a), (2.13B), the relations in (2.14) cannot
hold. Since x is a solution of (2.9) For some A€ [0,1],the computation following (2.9)
show that |x'(t)]| <K and hence |x'(t)] <K+1, 0<t<T. Hence, the second case

in (2.14) cannot hold. Thus it remains to eliminate the first possibility of
(2.14). We shall prove that if x €32 is a solution of (2.9), then there exists no

g€ [v,T] such that |x(t)|2~q)2(t) reaches maximum value zero at t = £ € [0,T].

Assume the contrary. Then, if £ €(0,T), we have the following relations

Ix(e) | = o(&) (2.15)
<x(£),%'(£)> = 9(£) 9" (£) (2.16a)
<xg(0),x'(£)> = o(E)e' (£)

or
<x,(0),x"(£)> = 9(£)9* (£) (2.168)
3= <xg(0),x"(£)>+ | (£) - 9(£)9"(£)-9'2(E) 0. (2.17)

Now assume that x is a solution of (2.9). Then by (2.6), (2.15), (2.168) we obtain

3= -axg(0),£(t,x ())>+(1- 0k x(£) |2+ (82 12- ()" (£) -9 2(E)

e
> (-0 {x ()20 2(8)-0(£) 9" () +k |x(£) | )

2(1-2) (&) {ko(£)-9"(E) ).

Since k>3;2—8- , te(0,T), we get J>0, A€ [0,1], contradicting (2.17).
Next we show that E&#T. If £€=T and g(t) = |x(t)|2-qa2(t) then the following
must hold:
g'(T) =2<x(T) ,x'(T)>-2¢(T)g'(T) 20
and
g(T) = 0.
Then |x(T)| =¢(T) and ¢'(T) <|x'(T)|. But, by the boundary condition (1.2b), we

have
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[BI]x'(T) ]| < In]+o(T).
Hence

[8] 9'(T) <|nj+te(T), if B 70
or
o(T) < n|, if B=0
which contradicts (2.58). Therefore £ #T as required.
I'inally, we show that g #0. Assume on the contrary that £ =0. It is straightfor-
ward to sce that
g(0) =0 and g'(0) o0,
imply
[x(0)| = 9(0) and-|x'(0)| < '(0)
From the boundary condition (1.2a) we obtain
~9(0) < [n(0) |+|a] 9'(0) , if a#0
or
#(0) <jh(0)|, if a =0,
contradicting (2.5a).
Consequently, no solutions of (2.9) can belong to 39 for A€ [o,1), completing the
proof of the theorem,

3. APPLICATIONS

As an application of the Theorem we consider the equation
(O 0, % )% () 4p(t,x Ix(1)4q(t,x ) =0, t€ [0,1] (3.1)

where £ and p are bounded real valued functions defined on [p,T]XCP and q is also
bounded IR"-valued function defined on [9,T]xcp.

We set

L= sup [ue,w], p= sup Ip(t,w)], q= laCt,w)].

sup
(t,wefo,1]xc (r,wefo,T]xc (t,welo,T]xc,
Then we have the following

PROPOSITION. If there exists a constant M,
M > max{%,p,q}
such that the inequality
e"(t)+Mf|e'(t) [+e(t)+1] <0, te[0,T] (3.2)
has a strictly positive solution ¢, subject to the conditions (2.5a), (2,58), then the
B.V.P. (3.1)-(1.2) has at least one solution satisfying
[x(t)| co(t), telo,T].
Moreover, there exists p not depending on x with
ix'(t)] <p, telo,T].
PROOF. It is enough to check the conditions of the theorem for the function
£(t,u,v) =2(t,u)v+p(t,u)u(0)+q(t,u),(t,u,v) G[b,T]XCrxﬂf’.
Indeed, for any (t,u,v) GID,T]XCPani, with |u(0)| = ¢(t) and <u(0),v> = |u(0)|e'(t),

we obtain
<u(0),£(t,u,v> = £(t,u)<u(0),v>+p(t,u) |u(0) |2+<u(0) ,q(t,u)>
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<ot wlluco) o () +pCt ,u) [u(0) |2+ uc0) | |q(t,w) |
=jeCe wleCede ' (£)+pt,we(t)+a(t) [a(t,w) |
<Lett) o' (1) 459 (£)+qe(t)
<Me(t) (o' (v) [+o(t)+1).

In view of (3.2), the above relation shows that (2.6) holds.
Also, for any (t,u,v) € I,O,T.IXCP"]Rn with |u(0)|,§0(t) we get, obviously,

<u(0),£(t,u,v)> < g(t) |v|+5¢2(t)+iw(t)
;c1+c2 v| N

where ¢ = sup (EQQ(tHaw(t)) and c, = sup (Le(1)).

Y tefo,T) telo,T]
Moreover,
<v,£(t,u,v)> <2 v[24p]vleCe) 4 v
sellvl+ilvl?,
where c' = sup _(pp(t)+q). Now, if |v|;1 then we have ci]vi+§|v|2§(ci+§|v|2)lvi. If
t€|0,T

Jv] <1 then (2.’8') follows from the inequality
i;i|v|—lllv|2, for each 21_3_0.
Indeced, we have
H 2 = 2 2.z
ci+2|v| zci+t vl +2|v|—ll|v| ;ci+21|v| +£.

Hence (2.8) is satisfied for ki :11 and k2' =ci+i-

EXAMPLE. The B.V.P.
x(t)

T+ Txg x'(t) =0, te]fo,1]

x"(t) +

x0=h

x(1)+8x'(1) =n
has at least one solution x such that
[x(t)] =<'2-e—
provided that function h and constants B and n are such that.
[n(0)]| <1 and |B|+1>e(2+|n]).
We remark that in this case £:=1 (and hence M =1) and (3.2) becomes 9"(t)+|v'(t)|_<'0,

tefo,1].

t
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