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ABSTRACT. Let A be the class of all operators T on a Hilbert space H such that
R(T*kT), the range space of T*kT, 1s contained in R(T*k+l), for a positive integer k.

It has been shown that {f T ¢ A, there exists a unique operator CT on H such that

(1) T = Tkl

k+1 Tk+l

(i1) ||cT||2 = fnf {u: u >0 and (THT)(T**T)* <y T* b

(111) N(Cp) = N(T*T) and

(1v) R(Cp) ¢ R(T¥H)

The main objective of this paper 1is to characterize k-quasihyponormal; normal, and
self-adjoint operators T in A 1in terms of CT' Throughout the paper, unless stated
otherwise, H will denote a complex Hilbert space and T an operator on H, i.e., a
bounded linear transformation from H into H itself. For an operator T, we write R(T)

and N(T) to denote the range space and the null space of T.

KEY WORDS AND PHRASES. Self-adjoint, normal, unitary, quasinormal, hyponormal,
quasihyponormal, k-quasihyponormal, isometry, partial isometry, null space, range
space and the projection.
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1. INTRODUCTION

T is sald to be quasinormal if T(T*T) = (T*T)T, hyponormal if T*T > TT* or
equivalently || T*xll < 'ITxll for each x in H, k-quasihyponormal (Campbell and Gupta
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[1]) for a positive ianteger k if T*k(T*T - TT*)Tk> 0 or equivalently
'lT*TkxII < 'ITk+lx'| for each x in H,

The purpose of this paper is to consider the class A of those operators T such
that R(T*kT) < R(T*k+l) for a positive integer k. More precisely, our aim is to
identify those operators T in A which are k-quasihyponormal, normal and self-
adjoint. The motivation is due to Embry [2] who considered the class of operators T
satisfying R(T) S R(T*) and Patel [5] who discussed the class of operators T satisfying

R(T*T) < R(T*Z). If T ¢ A, then by Douglas' theorem [3, Theorem l] there exists a

unique operator Cy such that

(1) T*kT = 'r*ld'l Cps

G0 Jfegl]? = tnflu: w o> 0 and (TETY (TR Ty < ra IR

IH
X

(iii) N(CT) = N(T* T): and

(1v)  R(C) € R(T8H .,

2. MAIN RESULTS.

By Douglas' theorem [3, Theorem 1], the class A contains all k-quasihyponormal

operators.
THEOREM 2.1. An operator T in A is k-quasthyponormal if and only if IICTl| <1,
moor. 1t {Jeg)| <1, [[rsl] = [ogr ™| < |77

for all x in H and hence T is k-quasihyponormal.

Conversely, assume that T is k-quasihyponormal. Since
leg Tx|| = [|m(|| < [|7"'x||

for all x in H, ||C¥y|| < ||y|| for all y in R(Tk+l;. Also since R(CT) c ;z;E;T;,

_ 1 N
i.e. R(Tk+l) c N(C%), we have C*Tx = 0 for all x in R(Tk+l) . Thus for each x in

H, llC% x|| < I'xll and consequently ||CT|| = ||C¥|| <1,

To prove our next result, we need the following lemma.

LEMMA 2.1. Let T be a quasinormal operator. Then for any positive integer k

k| gkl

k/2

(a) T*T

(b) ||(T*T) x|| = '|Tkx|| for all vectors x in H

() N(T#T) e N (1Y),
PROOF. (a) We prove it by induction on k. For k = 1, trivial. For k = 2, again
it holds since T is quasinormal. Now assume that the result is true for any positive
m+1 m m-1 m-1 m-1
integer m > 2. Then T*T = (T*T )T = (T T*T)T = T (T*T)T = T TT*T = TmT*T.
Hence by induction the result follows. (b) It is an immediate consequence of the fact

that if T 1is quasinormal, then (T*T)k = T#KTK £or any positive integer k. (c)
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Let x € N(T*kT). Then T*ka =0, i.e., T*T T*k—lx = 0 by (a). Thus T*k'lx € N(T*T) =

N(T). But N(T) € N(T*) since T is quasinormal. Therefore T*kx =0, i.e.,
X € N(T*k).

By using the lemma we obtain the following
THEOREM 2.2. Let T €A be a quasinormal operator. Then C; is a quasinormal

partial isometry with R(CT) = R(Tk+l).
k+1 k k-1
PROOF. We have |[Cx T x|| = ||T* T'x|| = ||T° T*1x|| =

|| (x* Tyk1/2 -rl:r;(” - ||(T*T)k:iizx”_=__]_l_'l‘k+lx“ for any x in H. Thus C# is an
isometry on R(T ). But R(T ") 2 R(CT) = N(C%) . Therefore C% hence C; is a
partial isometry. Further, since the initial space of a partial isometry S equals the
set of all those vectors x satisfying ||Sx|| = ||xl| [4, p. 63] and since

1
C% is an isometry on R(Tk+l), therefore R(Tk+l) c N(C%) , the initial space of C%.
R
Hence R(T“*!) = N(CH)™ = R(C)) = R(C}) as R(Cp) 1s closed.

We now prove that Cp is quasinormal. By making use of Lemma 2.1 again, we see
that N(Cp) = N(T#T) © N(T#%) € N(T#*]) = N(CH) since R(Cy) = R(T*'!). From this 1t
follows that N(CT)lreduces CT and since CT is a partial isometry, CT is of the form
A ® 0, where A is an isometry. This gives that C; commutes with C*; Cp and hence Cp
18 quasinormal.

LEMMA 2.2. Let T cA be such that R(Cy) = R(T). Then N(T*T) = N(T).

PROOF. Since R(C,) € R(T') <... < R(T) and, by hypothesis, R(Cp) = R(T). we
have R(Cp) = R(T*)) =...= R(T). Thus N(T*) = N(T*2) = ... = N(T*) = N(T#%*D).  Now,
if x ¢ N(T*kT). then T*ka =0, i.e. Tx ¢ N(T*k) = N(T*). That means T*Tx = O or

x € N(T*T) = N(T). This completes the proof.

Our next result gives a characterization of normal operators in A .
THEOREM 2.3, An operator T in A 1is normal if and only if C; is a normal partial

isometry with R(CT) = R(T).
PROOF. Let T be normal. Then by Theorem 2.2, CT is a partial isometry with

1 1
L 2 N(T*) = R(T). Thus by Lemma 2.2,

R(C) = R(T™*!) and hence R(Cp) = N(T**
1 1 1

N(CT) = N(T*kT) = N(T). Therefore R(CT) = R(T) = N(T*) = N(T) = N(CT) - R(C*T).

Since C% CT is the projection on R(C%) and CTC% is the projection on R(CT), we

% = Ck
conclude that CTCT C CT

T T.
Assume on the other hand that Cris a normal partial isometry with R(CT) = R(T).
Stnce R(Cp) < R(THYy ¢ R(TY) € ... < R(D), ve have R(C) = rR(T<H)

= R(T®) = ... = R(T) and consequently N(T#)= N(T*2) =... = N(C*p) = N(Cp) = N(T*T) =
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N(T) by Lemma 2.2. Thus ||T*x|| = [|Tx|| for each x in R(™). Further since Cxp is a
partial isometry on R(Cp) = R(TYT), we have Hrethx|| = ||exe ™+ k|| = | |7 x| for
each x in H. Thus ||T*y|| = ||Ty|| for each y in R(TY).  Hence [IT*x|] = ||Tx|| for
each x in H, f.e., T is normal.

COROLLARY 2.1. Llet T e¢A. Then T is normal and one-to-one if and only if Cy is a

unitary operator with R(CT) = R(T).

PROOF.  Suppose T is normal and one-to-one. Then by Theorem 2.3, Cp is a normal
partial isometry with R(CT) = R(T). Since N(CT) = N(T) = {0}, we have N(Cp) = H and
thus C; is an isometry and consequently CT is a unitary operator.

Conversely, if CT is a unitary operator with R(CT) = R(T), T is normal by Theorem
2.3. Also by Lemma 2.2, N(T) = N(T*kT) = N(CT) = {0}, therefore T is one-to-one.

The next corollary characterizes self-adjoint operators im A .

COROLLARY 2.2. Let T ¢ A, T is self-adjoint if and only 1if Cr is the projection
on R(T).

PROOF. Suppose T is self-adjoint. Then by Theorem 2.3, R(CT) = R(T) = ;(—'I‘T&l).
Simce T**r = T#k*l Cp and T is self-adjoint, we have T¥'! = Tk+1CT. i.e.,
C,‘I*, 'l‘k+l = Tkﬂ. This means C,’i‘, =1 on RFI‘FT; = iT("f). Also C:i‘, = 0 on _R_(—'i'_)'l
as W’f)_‘t m;fl= N(C}f,). Therefore Cp is the projection on R(T).

Assume now that CT is the projection on R(T). Then R(CT) = R(T) and hence by
Lemma 2.2, N(CT) = N(T*kT) = N(T). Also, as in the proof of Theorem 2.3, we have

R(C) = R(TMY) = ... = RCT) and thus N(T*) = N(T*%) = ... = N(CE) = N(Cp) = N(T).

Therefore T*x = Tx for all x in R(Tk). Moreover T*k'l' = T*k'HCT, implies

T*Tk = CTTk".l as CT is self-adjoint. But CT is the projection on R(T) = R('I'k-"l

)'
therefore C.l.'l'k“'l = Tk+l, That means T*y = Ty for all y in R(Tk). Thus T*x = Tx for

all x in H or T is self-adjoint.
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