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ABSTRACT. The influence of certain discontinuous delays on the behavior of solutions to partial

differential equations is studied. In Section 2, the initial value problems (IVP) are discussed for differential

equations with piecewise constant argument (EPCA) in partial derivatives. A class of loaded partial

differential equations that arise in solving certain inverse problems is studied in some detail in Section 3.

Section 4 is devoted to obtain the solutions of IVP for linear partial differential equations with piecewise

constant delay by using integral transforms. Finally, an abstract Cauchy problem is discussed.
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1. INTRODUCTION.
Functional differential equations (FDE) with delay provide a mathematical model for a physical or

biological system in which the rate of change of the system depends upon iis past history. The theory of

FDE with continuous argument is well developed and has numerous applications in natural and engineering

sciences. This paper continues our earlier work [1-5] in an attempt to extend this theory to differential

equations with discontinuous argument deviations. In these papers, ordinary differential equations with

arguments having intervals ofconstancy have been studied. Such equations represent a hybrid of continuous

and discrete dynamical systems and combine properties ofboth differential and difference equations. They

include as particular cases loaded and impulse equations, hence their importance in control theory and in

certain biomedical models. Continuity of a solution at a pointjoining any two consecutive intervals implies

recursion relations for the values of the solution at such points. Therefore, differential equations with

piecewise constant argument (EPCA) are intrinsically closer to difference rather than differential equations.

In [6] boundary value problems for some linear EPCA in partial derivatives were considered and the

behavior of their solutions studied. The results were also extended to equations with positive definite
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operators in Hilbert spaces [7]. Here initial value problems 0VP) are studied for EPCA in partial derivatives.

A class of loaded equations that arise in solving certain inverse problems is explored within the general

framework of differential equations with piecewise constant delay.

2. INITIAL VALUE PROBLEMS.
It has been shown in [6] that partial differential equations (PDE) with piecewise constant time

naturally arise in the process of approximating PDE by simpler EPCA. Thus, if in the equation

u, =aEu=-bu, (2.1)

which describes heat flow in a rod with both diffusion a2u= along the rod and heat loss (or gain) across the

lateral sides of the rod, the lateral heat change is measured at discrete moments of time, then we get an

equation with piecewise constant argument

u,(x,t) a2u=(x,t) bu(x, nh ), (2.2)

where

_
[nh, (n + 1)h ], n 0,1 and h > 0 is some constant. This equation can be written in the form

u,(x,t) a2u=(x,t) bu(x,[t/h ]h ), (2.3)

where [.] designates the greatest integer function. Ordinary differential equations with arguments

It’], It-hi, It + n] have been investigated in [1-4], with It + 1/2] in [5], and with [t/h]h in [8-9].
Furthermore, EPCA have been used recently in [9] to approximate solutions of equations with continuous

delay. The diffusion-convection equation

u,--a2u=-cux (2.4)

describes, for instance, the concentration u (x, t) of a pollutant carried along in a stream movingwith velocity

c. The term a2u= is the diffusion contribution and -cux is the convection component. If the convection

part is measured at discrete times nh, the process results in the equation

ut(x, a2u=(x, cu(x, [t/h ]h ). (2.5)

We consider the initial value problem 0VP)

Ou(x,t)+p(O)uOt
(x,t) Q -x u(x,[t/h ]h ), (2.6)

u(x, o) Uo(X),

whereP andQ are polynomials ofthe highest degree tn with constant coefficients, designates the greatest

integer function, h const > 0, and

(x,t)G -(-, ),, [0, ).

DEFINITION 2.1. A function u(x,t) is called a solution of IVP (2.6) if it satisfies the conditions:

(i) u(x,O is continuous in G; (ii) Ou/dt and o4u/Ox(k O, 1 m) exist and are continuous in G, with the

possible exception of the points (x, nh), where one-sided derivatives exist (n -0,1, 2..); (iii) u(x,O satisfies

Eq. (2.6) in G, with the possible exception of the points (x, nh), and the initial condition u(x, O) Uo(X).
Let u,(x, t) be the solution of the given problem on the interval nh -: < (n + 1)h, then

Ou,(x,t)/Ot + Pu,(x,t) Qu,(x), (2.7)

where

u,(x) u,(x,nh). (2.8)
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Write

which gives the equation

and require that

Un(x,t)=wn(x,t)+vn(x),

OWn/Ot + Pw, + Pvn(x) Qua(x), (2.9)

cgw/Ot +Pw 0, (2.10)

Pv,(x)--Qu(x). (2.11)

Let vn(x) be a solution of ODE (2.11), then at t=nh we have

w(x,nh u(x)- v.(x), (2.12)

and it remains to consider Eq. (2.10) with initial condition (2.12). It is well known that the solution E(x,O
of the problem

Ow/Ot +Pw O, w(x,O)-- Wo(X ), (2.13)

with Wo(X) 6(x), where 6(x) is the Dirac delta functional, is called its fundamental solution. The solution

of IVP (2.13) is given by the convolution

w(x,t) E(x,t) , Wo(X). (2.14)
Hence, the solution of problem (2.10)-(2.12) can be written as

w.(x,t) E(x,t nh ), wn(x,n ), (2.15)

and the solution of (2.7), (2.8) is

u(x,t) E(x,t nh , (u.(x) v.(x)) + v(x), (2.16)

(nh st <(n + 1)h).

Continuity of the solution at t=(n+l)h implies

u,(x,(n + 1)h)=U,+l(x,(n + 1)h) u, +l(x),

that is,

u, +(x)- E(x,h ). (u,(x)- v,(x)) + vn(x). (2.17)

Formulas (2.16), (2.17) successively determine the solution of IVP (2.6) on each interval nh (n + 1)h.

Indeed, from Pv0(x) Quo(x) we find Vo(X) and substitute both uo(x) and Vo(X) in (2.16) and (2.17), to obtain

uo(x,t) and u(x). Then we use ut(x) in (2.11) to find Vl(X) and substitute ut(x) and vt(x) in (2.16) and

(2.17), which yields ul(x,t) and u2(x). Continuing this procedure leads to u(x,t), the solution of (2.6) on
[nh, (n + 1)h ]. The solution v(x) of (2.11) is defined to within an arbitrary polynomial q(x) of degree < m.

Since q(x) is a solution of Eq. (2.13) with the initial condition w(x,O)=q(x), then q(x) E(x,t). q(x) and

q(x) cancels in formulas (2.16), (2.17). This concludes the proof of the following assertion.

THEOREM 2.1. If Eq. (2.13)with w(x,O)=uo(x) has a unique solution on ttE (0,oo), then there

exists a unique solution of IVP (2.6)on (0, oo)and it is given by (2.16), for each interval nh (n + 1)h.
COROLLARY 2.1. There exist unique solutions of Eqs. (2.3) and (2.5), with u(x, O) Uo(X), in the

class of functions that grow to infinity slower than exp(x) as Ix I--" oo.

For Eqs. (2.3) and (2.5) we have

V(X)--a-2b f(x -s)u.(s)ds and vn(x)--a-c u(s)ds,
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respectively, and E(x, t) exp(-x2/4a2t)/2avr-.
Formula (2.16) for the solution of the problem

u,(x,t) a2u=(x,t) bu=(x,[t/h ]h ), u(x, O) Uo(X) (2.18)

on nh < (n + 1)h becomes

u.(x,t) -’ E(x,t nh), u,(x) + "- u.(x), (2.19)

where E(x,O is the same as in Eqs. (2.3) and (2.5).
The above method may also be used to solve IVP for PDE of any order in with piecewise constant

delay or systems of such equations. In the latter case, P and Q in (2.6) are square matrices of linear

differential operators and u(x,O is a vector function. Thus, the solution u.(x,t) of the problem

uu(x, a2u=(x, bu=(x, [t]), (2.20)

u(x,O)-- fo(X ), u,(x,O)--- go(X (2.21)

on n < <n + is sought in the formu(x,t) w(x,t)+v.(x) whence a2v."(x)-bu."(x,n) 0

and O2wn/Ol2--- aEO2wn/Ox2. Setting u(x,n)-- f.(x), u,(x,n)- g.(x) gives v(x)- a-2bf.(x),
w(x,n)-- (1-a-b) f.(x), wt(x,n)-- g(x), and

u(x,t)--f.(x)+(1 __)f(x-a(t-n))+ +a(t-n))

1 f g.(s)ds. (2.22)+’ a’t n)

Putting n + produces the recursion relations

_
( b f.(x a + f.(x + a

f. (x f.(x + 1- --a 2

(2.23)

b af.’(x +a)-af.’(x-a)
1-- 2

+1/2(g.(x +a)+ g.(x-a)). (2.24)

3. LOADED EQUATIONS.
Loaded partial differential equations have properties similar to those of equations with piecewise

constant delay. The 1VP for the following class of loaded equations

Ot "x (x,t) + Qy -x u(x, ty), (3.1)

u(x, O) Uo(X (3.2)
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was considered in 10], where (x, t) R" x [0, T], the (0, T] are given, P(s) and Ql(s) are polynomials

in s (s s,,), and Ql(s)1 0. Eq. (3.1) arises in solving certain inverse problems for systems with

elements concentrated at specific moments of time. The Fourier transform U(s,t) of u(x,t) satisfies the

equation

whence

U,(s,t) =P(is)U(s,t) + Q,(is)U(s,ti), (3.3)
1"1

U(s,t) Uo(s)ee(‘ + k(P(is),t) Ql(is)U(s,ti), (3.4)
j-I

where Uo(s) is the Fourier transform of Uo(X) and

Denote

k(P(is),t)- i em")dY"

A Uo(s)e’, k k(P(is),tl),B Q(is)U(s, ti)
1-1

then multiply by Qj(is) each of the equations

and add them. Hence,

or

The equation

U(s, ti) =A, + k/B, j q

(3.5)

(3.6)

B , AQl(is) +B , kiQi(is) (3.7)
j-t i-I

(1-,.kQ,(is))B (3.8)

A(s)- 1- Qj(is)k(P(is),t)-O (3.9)

is called the characteristic equation for (3.1) and its solution set Z is called the characteristic variety of

(3.1). It is said [10] that (3.1) is absolutely non-degenerate if Z-fi, non-degenerate of type a if

a inf Ires I< ,s Z Cn, and degenerate ifZ C". The case Z O implies A(s) const, since A(s)
is meromorphic, and a meromorphic function that is not constant assumes every complex value with at

most two exceptions. The equation A(s) C can be written as

q q

P(is) + , Q(is)- , Q(is)eetch’ CP(is) (3.10)
j-I j.l

and is possible for q > only ifP(s)= const, otherwise exp(P(is)t) would grow faster than any polynomial,

which breaks the latter equality. For q=l, we have

P(is qa(s)=(P(is)+Qa(is)-Q(is)e )/P(is), (3.11)

and in this case Z O is equivalent to P(is) + Q(is). O. On the other hand, A(s) 0 is equivalent to

P(is) + Q(is)- Q(is)eet")t’ .0, (3.12)
j-1 1-1
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which implies P(s)=const. This establishes the following proposition which was stated in [10] without

proof.
LEMMA 3.1. Eq. (3.1) is absolutely non-degenerate if only if either of the following conditions

holds true:

(i) P(s) Cx, Q,(s)k(C,tj) C2 * 1;
j=l

or

(ii) q-- 1, P(s)+Ql(s)=O.

Eq. (3.1) is degenerate if and only if

P(s) C1, , Qj(s)k(C,tj) 1.

Substituting B from (3.8) in (3.4) leads to the proof of the following theorems which were formulated in

[10l.
TItEOREM 3.1. The uniqueness classes for the solution of the Cauchy problem for an absolutely

non-degenerate equation (3.1) are the same as those for the equation (without "loads") u,(x,t) Pu(x,t).

THEOREM 3.2. The homogeneous degenerate IVP (3.1) (Uo(X) 0) has non-trivial solutions, with

compact support.

THEOREM 3.3. Suppose that Eq. (3.1) is of finite type a(0 < a < oo) and that u(x,O is a solution

of (3.1) with Uo(X) O. If

lu(x,t)lCell,x g’, tE[0,T], (3.13)

and ct < a, then u (x, t) 0. For any a > a there exists a solution u (x, t) 4, 0 of (3.1) with uo(x) 0 satisfying

(3.13).
The uniqueness classes for the solution of the Cauchy problem for the equation u,(x, t) Pu(x, t)were

explored in 11] and consist of the functions that grow no faster than exp(a Ix [’) as Ix [-- 0% where a >

depends on the degree of P(s). Integral transformations can be used also in the study of EPCA.

SOLUTION FORMULAS.
The purpose of this section is to show that integral transforms can be successfully used to find the

solutions of IVP for linear partial differential equations with piecewise constfint delay.

u(x,O)-uo(X (4.1)

b

THEOREM 4.1. The solution of the problem

u,(x, t) a2u=(x, t) bu=(x, [t]),

is given by the formula

-o\ 31

+ 1- " E(x,t +j-It]) .Uo(X), (4.2)

where E(x,t) exp(-x2/4aZt)/2avr- and E(x, O). Uo(X) Uo(X).

PROOF. For n -: < n + 1, Eq. (4.1) becomes

u,(x,t) aZu=(x,t)- bu=(x,n ), (4.3)
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and the Fourier transform U(to, t) F(u(x,t)) satisfies the equation

U,(to, --a2ofiU(o, + boflU(to, n ),

whence

At t=n we have

and

At t=n+l this gives

and

b
U(to, t) Ce-’2’2’-n) +-U(to, n ).

U(to, n)=C +-U(to, n), C
b

U(o,n),

b

(4.4)

U(to, n + 1)

(4.5)

(4.6)

e-’2(’-n))U(to, n). (4.7)

U(to, n (4.8)

U(to, n)- . 1-- e-’A" U(o,O) (4.9)

Substituting the binomial expansion of U(o,n) in (4.7) yields (4.2).
THEOREM 4.2. The solution of Eq. (2.1) with the initial condition u(x, O) Uo(X) is given by the

formula

b b
u(x,t) Uo(X) , (F=(x,t)- " F(x,t) + -F(x,h[t/h ]), (4.10)

a a

where

F(x,t)=ttl([t/h
bj [j\ x2j+l

,.ox j -,.o[J (-1)’e(x’t-o-a)h}* (Y + ,)’H{x}" (4.11)

H(x) =1, for x > O, and H(x)=0, for x < O.

PROOF. For nh < (n + 1)h, we have

ut(x,t a2u=(x,t) bu(x, nh ),

and the two-sided Laplace transform U(s,t) -L(u(x,t)) satisfies the equation

Ut(s,t) a2s2U(s,t)- bU.(s), U.(s) U(s, nh

whence

At t=(n+1)h this gives

and

+ U.Cs).

+ U.(s)

(4.12)

(4.13)

(4.14)
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Hence

and

e"22 + (1 e") a-s Uo(s),

Uo(s L Uo(X ).

U.(s) Uo(s), j a2s ,’Z’.ok

.o(n b i_. [j
(eO%U(s,t)- Uo(s), j ,.ok) (-1)*

e +e
which proves the result.

THEOEM 4.3. e solution of. (2.5) with u(x, O) Uo(X) is given by the formula

c c
u(x,t)= Uo(X) . (F=(x,t)- F(x,t) + F(x,h[t/h]),

a a

were F(0 is defined in (4.11).
THEOEM 4.4. e solution of problem (2.6) is given by the formula

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

+Q ,(olox)Ps (x), (Vs(x, h It/h ]) Vs(x, )), (4.21)
where

F(x,l-. (-lE(x,-(]-,

E(x,O is the fundamental solution of (2.13), and Pi(x)is the inverse Laplace transform of Pi(s).

PROOF. The solution u(x,t) of (2.6) on the interval h < ( + 1)h satisfies (2.7) (2.8), and

for its two-sided Laplace transform in x we obtain the equation

U(s,t) + P(s)U(s,t) Q(s)U.(s), U.(s) U(, ),. (4.23)

whence

At t=nh we have

and

At t-(n+l)h this gives

hence,

U(s,t) Ce-e(’)(’-") + P-t(s)Q(s)U.(s).

U.(s) C + P-(s)Q(s)U.(s)

U(s,t) (e -e(’)(’ -’’) + (1 e-P(s)(t-)-lQ )Un(s).

U. /(s)-- (e-e(’’ +(1 -e-e<’’)P-Q)U.(s),

U.(s) (e-es + (l _e4"’)h)p-’Q )"Uo(s

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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and

Therefore,

U.(s) Uo(s), j .ok]

-o\j k
(-l)e -P(’)k(" - +)

tt Q,/Ip-,- (_l),e-e,),-0-,), (4.30)
-oj ok

which leads to (4.21).
Linear differential equations in Banach space with arguments It] and -nit] have been studied in

[2]. Consider in a Banach space Y the equation

u ’(t) Au(t) + Bu([t]) (4.31)

with linear constant operatorsA: D(A Y andB: D(B Y, their domainsD(A CD(B C Y, and D(A)

is everywhere dense in Y. According to [2], a solution of Eq. (4.31) on [0, oo) is a function u(t) satisfying

the conditions: (i) u(t) is continuous on [0, o) and its values lie in the domain D(A) for all [0, oo). (ii)
At each point [0, oo) there exists a strong derivative u’(t), with the possible exception of the points

[t [0, o) where one-sided derivatives exist. (iii) Eq. (4.31) is satisfied on each interval [n, n + 1) C [0,
with integral endpoints. The Cauchy problem on [0,o) is to find a solution of the equation on [0,
satisfying the initial condition

u(O) u D(A ). (4.32)

The properties of solutions to Eq. (4.31) with bounded operators are similar to those of solutions to systems
of ordinary differential equations which can be viewed as equations in a finite-dimensional Banach space.

Indeed, ifA,B :Y Y are bounded linear operators andA is bijective, then problem (4.31)- (4.32)on [0, oo)
has a unique solution [2]

u(t) V(t [t])vt’l(1)Uo, (4.33)

where

V(t) eAt + (eAt- I)A-1B. (4.34)

This solution cannot grow to infinity faster than exponentially. If, in addition, there exists a bounded inverse

of the operator V(1), then the solution has a unique backward continuation on (-, 0] given by formula

(4.33). The Cauchy problem

u’(t) =au(t), u(O) u D(A (4.35)

is correctly posed on [0,o) if for any uo D(A) it has a unique solution, and this solution depends

continuously on the initial data in the sense that if u,,(0) O(u,(O)_D(A)), then un(t)- 0 for the

corresponding solution at every tU [0, o). If the Cauchy problem (4.35) is correct, its solution is given by

the formula

u(t)- T(t)Uo (Uo 6?.D(A )), (4.36)
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where T(t) is a semigroup of strongly continuous operators for > 0. For many applications it is necessary

to extend the concept of solution of the Cauchy problem. A weakened solution of Eq. (4.35) on [0, oo) is

a function u(O which is continuous on [0, ), strongly continuously differentiable on (0, oo) and satisfies

the equation there. By a weakened Cauchy problem on [0, oo) we mean the problem of finding a weakened

solution satisfying the initial condition u(0) u0. Here the element u may already not lie in the domain

of the operator A. Thus, the demands on the behavior of the solution at t=O are relaxed. On the other hand,

we require the continuity of the derivative of the solution for > 0. However, for a correct Cauchy problem
this requirement is automatically satisfied. The following result has been proved in [2].

THEOREM 4.5. Suppose that Eq. (4.31) with linear constant operators A and B satisfies the

hypotheses:

(i) The operator A is closed and has at least one regular point, the domain D(A) is dense in Y.

(ii) The weakened Cauchy problem for Eq. (4.35) is correct on [0,

(iii) D(B DD(A and eu ED(A ), for any u ED(A ).

Then on [0, ) problem (4.31) (4.32) has a unique solution

u(t)-(T(t- [,])+ [tT(t,l -s)Bds) II(T(I,+-t,l f,’- 1T(k-s)Bds)uo. (4.37)

Consider the initial value problem

#u
A (O )u(x,t) + f(t,u(x,[t])), (4.38)

Ot

u (x, o) Uo(X ),

where u(x,O and Uo(X) are m-vectors, x (xi,x2, x)R,
A(D)= X A,D’ (4.39)

lal

D D?..’= .Dt, Dk-iOlOx(k-1,2 N), the coefficients

A, are given constant matrices of order tn x m, and the m-vector ]" (E C([n,n + 1)x L2(RC),L:’(RV)),
n 0,1, 2,.... The number r is called the order of the system. It is assumed that u0 tE L:’(R), and the

solutions sought are such that u (x, t) tEL 2(R^r), for every z 0. Let lal(s), Ix2(s) Ix,,(s) be the eigenvalues
of the matrix A(s). The system

is said to be parabolic by Shilov if

A (D)u (4.40)
Ot

RelxiCs) -c Is +b, j tn

where h > 0, c > 0, and b are constants.

THEOREM 4.6. Problem (4.38) has a unique solution on Ru x [0, oo) if system (4.40) is parabolic

by Shilov, the index of parabolicity h coincides with its order r, and fEC([n,n + 1)L2(RU),L2(R)),
n -0,1,2

PROOF. For a fixed twe may consider the solution u(x,O as an element ofL 2(R^’), and f(t,u(x,[t])

may be treated as an abstract function f(t,u([t])) with the values in L 2. Therefore, IVP (4.38) is reduced

to the abstract Cauchy problem
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du
-Au + f(t,u([t])), ul,.o- Uo _L2. (4.41)

dt

Applying to (4.40), with the initial condition u(x, O) Uo(X), the Fourier transformation F in x produces the

system of ordinary differential equations

Ut(o,) t) A (co)U(to, ), (4.42)

with the initial condition U(to, 0) U0(to), where U(to, t) F(u(x, t)), U0(to) F(uo(X)), andA (to) is a matrix

with polynomial entries depending on to (to1, to2,-.., to,v). The solution of (4.42) is given by the formula

U(to, ett’)Uo(to). (4.43)

Parabolicity of (4.40) by Shilov implies that the semigroup T(t) of operators of multiplication by e ’’tt’’), for
> 0, is an infinitely smooth semigroup of operators bounded in L:’(R’). Together with the requirement

h =r, this ensures that the Cauchy problem for (4.40) is uniformly correct in L ’(RN) and all its solutions are

infinitely smooth functions of t, for > 0. Since f is continuously differentiable, problem (4.41) has on

[0, 1) a unique solution

.() T(t). + T(t s)f(s, uo)ds. (4.44)

Denoting ul u(1), we can find the solution

.(t)- r(t- 1). / f r(- s)/(s,u)as (4.45)

of (4.41) on [1, 2) and continue this procedure successively. If./’(t, u ([])) -Bu([t]), where B is a constant

matrix, the solution of (4.38) for [0,) is given by (4.37). The theorem holds true iffincludes also the

derivatives of u(x,[t]) in x of order less than r, provided the initial function u(x) is sufficiently smooth.
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