
Internat. J. Math. & Math. Scl.
VOL. 14 NO. 3 (1991) 545-552

SPLAYING A SEARCH TREE IN PREORDER TAKES LINEAR TIME

R. CHAUDHURI and H. HFT
Department of Computer Science

Eastern Michigan University
Ypsilanti, Michigan 48197.

(Received May 31, 1990 and in revised form November I, 1990)

545

ABSTRACT. In this paper we prove that if the nodes of an arbitrary n-node binary
search tree T are splayed in the preorder sequence of T then the total time is O(n).
This is a special case of the splay tree traversal conjecture of Sleator and Tarjan.

KEY WORDS AND PHRASES. Binary search tree, preorder traversal, rotation, splay.

1980 AMS SUBJECT CLASSIFICATION CODE. 68P05

1. INTRODUCTION

A form of self-adjusting binary search tree, called the splay tree, has been studied by

Sleator and Tarjan in [1]. On any sufficiently long access sequence, splay trees have

been shown to be as efficient, to within a constant factor, as both dynamically balanced

and static optimum search trees. It was conjectured that the splay trees are as efficient

as any form of dynamically updated search trees. In particular, the following conjecture

appeared in [1] as a special case of the dynamic optimality conjecture regarding splay

trees:

TRAVERSAL CONJECTURE (Sleator and Tarjan)

Let T and T2 be any two n-node binary search trees containing exactly the same

items. Suppose that we access the items in T one after another using splaying,

accessing them in the order they appear in T2 in preorder (the item in,the root of T2 first,

followed by the items in the left subtree of T2 in preorder, followed by the items in the

right subtree of T2 in preorder ). Then the total access time is O(n).

A special case of this traversal conjecture was proved by Tarjan in [3]. He showed

that the nodes of an arbitrary search tree can be splayed in symmetric order (inorder) in

linear time i.e. O(1 per access.

In this paper, we prove the traversal conjecture in the case when T T2. That is,

we prove that the nodes of a binary search tree can be splayed according to its own

preorder sequence in time O(n). Note that a binary search tree T can be transformed

to another binary search tree T2 using at most O(n) rotations [5]. Hence given any two

binary search trees T and T2, if we first transform T into T2 by using rotations and then

splay the resulting tree according to its preorder sequence then the total time is still

O(n). Thus if we are faced with the task of accessing the nodes of one tree in the



6 R. CHAUDHUR AND H. H6FT

preorder sequence of another tree then this can be done in linear time by the method

described above.

2. PRELIMINARIES

A binary search tree is a binary tree whose nodes contain distinct items selected

from a totally ordered universe such that for any node x, the items in the left subtree of x

are less than x and the items in the right subtree of x are greater than x.

A path in a binary tree is defined as a sequence of nodes l,t2 k such that ti is the

parent of ti+l, i=1,2 k-1. The depth of a node x is the length of the path from the root to

x. For any node x in a binary tree, let left(x) and right(x) denote the left and right child of

x respectively. A left chain in a binary tree is defined as a path tl,t2 k such that ti+

left(ti), i=,2 k-1. A right chain is defined analogously. The left and right arms of a

binary tree are the longest left and right chains originating at the root respectively.

A rotation in a binary search tree preserves the symmetric order of items in the tree.

Figure illustrates the rotation of the edge joining x and y.

C

right rotation

A B left rotation

Figure 1. Rotations in a binary tree

A binary search tree in which we splay after each access at the node containing the

accessed item is called a splay tree. Splaying is a restructuring operation consisting of

a sequence of rotations. To splay a tree at a node x, we walk up the path from x to the

root performing rotations along the path. The rotations are performed in pairs, unless

the node x is a child of the root. To be specific, we splay at x by repeating one of the

following steps until x is at the root of the tree.



SPLAYING A SEARCH TREE IN PREORDER TAKES LINEAR TIME 547

(a) Zig case

x

B C A B

(b) Zig-zig case

C D A B

(c) Zig-zag case

x

B C A El C D

Fig 2. Three possible splayings at x. Each case has a symmetric
variant (not shown here).

(a) zia-ca,e: If the parent p(x) of x is the tree root, rotate the edge joining x to p(x). This

makes x the root and terminates splaying.

(b) zi_a-zia_ case: If p(x) is not the root and x and p(x) are both left children or dght
children, rotate the edge joining p(x) to its parent and then rotate the edge joining x to
p(x).

(c) zi_a-za_a cas: If p(x) is not the root and x is a left child and p(x) is a right child or
vice-versa, rotate the edge joining x to its parent and then rotate the edge joining x to its
new parent.

The splay depth of a node x is the depth of x at the time we start splaying at x. Let T be

a n-node binary search tree such that the preorder sequence of its nodes is ,t2 ,tn.

As we splay T according to its own preorder sequence, we generate a sequence of

binary search trees T1,T2 Tn such that TI= T(tl) T and T T(ti) SPLAY(Ti.I,ti)

and T(ti) is the binary search tree with ti at the root (obtained by splaying the original

tree T in the sequence tl,t2 ). The notation SPLAY(T,x) denotes splaying x in the

tree T.

Let z be a node in a binary search tree T. A node y in T is a right ancestor of z if y is an

ancestor of z and z < y. As in [3], we denote the set of all the right ancestors of z by

A(z). Note that z A(z). Furthermore, the set of all the right ancestors of z in the

subtree rooted at x will be denoted by A(z,x). Clearly, the node x belongs to A(z,x) if and

only if z is an element of the left subtree of x.



548 R. CHAUDHURI AND H. HOFT

3. MAIN RESULTS

We are now ready to state and prove our main results.

THEOREM 1.

Let T be a binary search tree whose nodes are being splayed according to its own

preorder sequence. Let x be a node of T and assume that the splay depth (SD) of x is

d. Then

(a) SD(left(x)) < d/2 +3/2 and

(b) SD(right(x)) < + IA(z,x)

where z is the preorder predecessor of right(x) in T and A(z,x) denotes the

cardinality of the set A(z,x).

PROOF:

(a) We note that each splay step consists of two rotations except possibly for the last

step when the node being splayed is the child of the root. At each splay step, the

distance of x from the root (which is the preorder predecessor of x in T) is reduced by 2

while that of left(x) is reduced by (except possibly at the last zig step where left(x)
does not move up if x was the right child of the root before it became the new root).

Since the original depth of x was d and that of left(x) was d+l, it is easy to see that

SD(left(x)) d/2 + if d is even

and SD(left(x)) < (d-1)/2 + 2

d/2 + 3/2, if d is odd.

This completes the proof of part(a).

(b) Assume that x does not belong to the right arm of T. Thus A(x) contains at least one

element other than x. We will show that the bound on the right hand side is attained in

such a case.

Assume first that x is the left child of its parent p(x). Figure 3 depicts the subtree of T

rooted at p(x).

(x)

left ht(x)

Figure 3. Subtree rooted at p(x) in
the original tree T.



SPLAYING A SEARCH TREE IN PREORDER TAKES LINEAR TIME 549

Note that x is the preorder successor of p(x)in T. Now consider the search tree T(p(x))

which is obtained by splaying tl,t2 p(x) successively in the original tree T. It must

have the subtree rooted at x on the right arm of its left subtree (figure 4) since in the

symmetric order (inorder) traversal of T, p(x) follows immediately after the symmetric

order (inorder) node sequence of the subtree rooted at x.

, tThis path may

left (x)---’, , right(x)

Figure 4. Subtree rooted at x is embedded
along the right arm of the left
subtree of T(p(x))

Since x is the preorder successor of p(x) in T, it is the node to be splayed next. Note

that the splay path of x consists of a number (may be zero) of zig-zigs followed by a

zig-zag or a zig at the end depending on whether the splay path is of even or odd

length. In either case, the structure of T(x) is depicted by figure 4.

Figure 5. Splay tree T(x) with
at the root

Clearly, the current left subtree L of x now contains the previous left subtree of x rooted

at left(x). Let S be the set of all nodes in the subtree rooted at left(x). Each element of S

is clearly greater than every element of L-S (figure 5). Hence, as the elements of S are

splayed the elements in L-S never appear on the right subtree of the root. Note that the

elements of S are to be splayed next in preorder.

Let z be the preorder predecessor of right(x). The path from x to z is the right most path

in L. All the right ancestors of z in the tree rooted at x lie along this path. Let A(z,x)

{z,m ,m2,. mk,x}, where z<m1<m2< <mk<x. As the nodes of S are splayed in

preorder, mk,mk. m ,z will appear successively on the right arm of the tree and will

form a chain. Furthermore, when z gets to the root the tree will look like as it appears in

figure 6.



550 R. CHAUDHURI AND H. HOFT

ml

p(x)

Figure 6. Splay tree with z (preorder
predecessor of right(x) at

the root

Since right(x) is the preorder successor of z in T, it is clear that the splay depth of

right(x) is given by SD(x) + IA(z,x)l. Note that the splay path of dght(x) will be a

zig-zag followed by a series of zig-zigs and possibly a zig at the end if the splay path is

of odd length. In case the original left subtree of x rooted at left(x)is empty,

SD(right(x))=2, since IA(z,x)l 1.

In the case where x is the right child of its parent, consider the path from x to the root of

T. Let nk be the very first node where the path turns right. Let h be the parent of nk. Then

nk < nk. < <n < x and h is greater than all the elements in the subtree rooted at nk

(figure 7).
h

left(x) right(x)

Figure 7. Subtree rooted at h in the
original tree T.

Arguing as before, we see that the subtree rooted at nk will be positioned on the right

arm of the left subtree of T(h). It is not difficult to see that our argument in the previous

case applies successively to each of the nodes nk.1, nk.2 n 1, x and finally to right(x).

Next consider the case where IA(x)l=l. The node x must be situated on the right arm

of original tree T and hence x is the right child of its parent p(x). Also, when x is at the

root its right subtree is the same as the subtree rooted at right(x).Clearly, when it is time

for the right(x) to be splayed the splay path consists of the right chain with z, m1,m2,

m3 mk,x and right(x) along the path.Therefore, SD(right(x)) A(z,x) in this case.

THEOREM ,
The time to splay an n-node binary search tree T according to its own preorder

sequence is at most 8n.



SPLAYING A SEARCH TREE IN PREORDER TAKES LINEAR TIME 551

PROOF: Clearly the time to splay each node on the left arm of T is 1. Let

X {Xl,X2 Xs}

be the nodes of T such that each is a right child of its parent. Let di be the splay depth of

xi, i=1,2 s. Using theorem (b), we have

di < + A(zi,P(Xi))l

where z is the preorder predecessor of x in T. Since the sets A(zi,P(Xi)) are pairwise

disjoint, it follows that

% d < s+n <2n.

Let the subtrees rooted at x ,x2,. xs have k ,k2 ks elements along their left arms

respectively (excluding the root in each case). Some ki’s may be zero. Using

theorem1 (a), since each of these nodes is the left child of its parent, the splay depths of

the k nodes along the left arm of x are bounded respectively by

di/2 + 3/2

di/2 + 3/2)/2 + 3/2 di/4 + 3/4 + 3/2

di/4 + 3/4 + 3/2)/2 + 3/2 di/8 + 3/8 + 3/4 + 3/2

and so on and therefore adding the above expressions vertically it follows that the sum

of the splay depths of the k elements is bounded by (di + 3 k ). Thus the sum of the

splay depths of all the elements in all such left chains is bounded by

T.di+3y_.,k < 2n+3n=5n.

Since the time to splay the elements on the left arm of T is at most n, the total time to

splay all the elements of T is necessarily bounded by 8n. This completes the proof.

REFERENCES

1. D.D.Sleator and R.E.Tarjan: Self-adjusting binary search trees, J,A.C.M. 32,
1985, 652-686.

2. R.E.Tarjan: Data Structures and Network Algorithms, C.B.M.S 44 (1983),S.I.A.M,
Philadelphia, Pa.

3. R.E.Tarjan: Sequential access in splay trees takes linear time, C,ombinatorica,,1985, 367-378.
4. R.E.Tarjan: Amortized Computational Complexity, $.I.A.M Journal of ADolied

Discrete Methods, 6, 1985, 545-568.
5. D.D.Sleator, R.E.Tarjan and W.Thurston: Rotation distance, Triangulations and

Hyperbolic Geometry, J. American Mathematical Society. ,1988, 647-681.


