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ABSTRACT. Let X be an abstract set and £ a lattice of subsets of X. Some general properties of
Lindelof, regular as well as normal lattices are investigated for their measure implications and their
relationship to separation properties. Moreover, we show that the generalized Wallman replete
space and the generalized Wallman prime complete space are Lindeldf spaces if and only if certain

measure relationships hold on £.
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1. INTRODUCTION. In this paper we consider in detail, Lindeldf lattices and their relationship
to separation properties, and also to certain measure properties. In particular, we show that the
generalized Wallman replete space is a Lindelsf space if and only if a certain measure relationship
holds on £, and, similarly, the generalized Wallman prime complete space is Lindeldf if and only if
another measure relationship holds on £.

Before doing this, we investigate some general properties of regular, Lindelof lattices as well as
normal and slightly normal lattices. We are mainly concerned with measure implications of these
properties, and also lattice separation properties that may result.

We adhere to standard lattice and measure terminology and notation (See e.g. (1], [2], [3], and
[7]), and we give some relevant background material in Section 2 for the reader’s convenience.

2. BACKGROUND AND NOTATION. Let X be an abstract set and £ a lattice of subsets of X.
It is assumed that § and X € £, although this is not necessary for some of our results.

MEASURE TERMINOLOGY. We now introduce some measure terminology and results.

1. a(L) is the algebra generated by £.

2. I(2) is the set of all 0-1 valued finitely additive measures defined on a (£). Also, we note
that there exists a 1-1 correspondence between € I(L) and prime £-filters given by F ={ € ;
umL)=1}.

3. Ip(L) is the set of all p € I(L) which are L-regular; that is, for A € a(2), u(A) = sup p(L)
where LC A, L€ L. Observe that the correspondence given in 2 gives a 1-1 correspondence
between I p(L) and L-ultrafilters.
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4. I,(L)is the set of all 0-1 g-smooth finitely additive measures on £. p € I(L) is o-smooth if
for L€ &, L,|0 then '}gnoo #(Ly) =0. Also, we note that u € I,(2) if and only if the associated
prime £-filter given in 2 has the countable intersection property (c.i.p.).

5. I%(Z) is the set of all 0-1 o-smooth finitely additive measures on a (£). A 0-1 measure p is
o-smooth on a (2) if for A, € £, 4,10, then lim p(Ap)=0.

6. It is worthwhile noting that if u € I p(L) then u € I9(L) if and only if u € I5(2).

I%(L) is the set of all £-regular measures of I7(L).

8. II(L) is the set of all premeasures on £; i.e., 7 € II(L) if m: £ — {0,1} and x(@) =0, 7 is
monotone and m(A) =n(B) =1 for A, B€ £ then n(ANB)=1. Also, it is easy to see that there
exists a 1-1 correspondence between £ filters and premeasures on £. In addition, if = € II(£) and
Ly10, Ly € L then lim w(L,) =0 then we write 7 € II,(2).

9. For pu € I(L), we define the support of u to be S(p) ={NL; L€ L; p(L)=1}. Similarly, we
define S(7) for = € II(L).

10. For z € X, we define p,(A) = {(1) :g p ﬁlA' A € a(2) to be the measure concentrated at z.

11. By p < v(&), we simply mean pu(L) <y(L)for all L € L.

LATTICE TERMINOLOGY. We next present some lattice terminology and results.

1. 6(2) is the lattice of all countable intersections of sets from £.

2'. (L) is the lattice of arbitrary intersections of sets from £.

3. &' is the complementary lattice of £; i.e., &' =1{L; L € £}, where prime denotes
complement.

4'. L is disjunctive if for any z € X and L, € L; zfL,, there exists an Ly € £; z € L} and
LyNLy=0. Also, we note that £ is disjunctive if and only if u, € I g(L) for all z € X.

5'. L is regular if for any z € X and L, € £; zfL,, there exist Ly, L3 € £;z € Ly, L, C L3 and
LynLy=0. Also, L is regular if and only if py < pg(L), py, pg € I(£) implies S(pg)~ S(1)).

6'. L is normal if for any Ly, Ly € £;L; N Ly =0, there exist Ly, Ly € L;L; C L3, Ly C L and
LyN Ly =0. Also, £ is normal if and only if for any s € I(L) there exists a unique v € I (L) such
that p < p(2).

7. Let £, and L, be two lattices of subsets of X. L, separates L, if Ly, Ly € £y;L; N L, =
then, there exist Ly, Ly € £;;L) C L3,Ly C Ly and LyN L, = 0.

8'. L is Lindelsf if 0 L, =0 where L € £ then, for a countable subcollection L, ,1=1,2...0of
L ﬂ L = 0. Equlva,lently, 2 is Lindeldf if and only if for each = € II,(2),S(7) # 0.

9’. L is countably compact if every countable covering of X by elements of L' has a finite
subcovering.

10" L is replete if for any p € I%(L), S(u) # 0.

11'. & is a delta lattice (6-lattice) if 6(L) = L.
Further related material can be found in ( [4}, [5], [6] and [8]).
3. ON SEPARATION. This section begins with the following observations which follows
directly from the definitions.
(1) & is Lindeldsf if and only if 74 is Lindelsf; and
(2) if £ is 6 and Lindeldf then, £ separates 74.

Now we investigate some implications of lattices properties for the correspondent measures.

THEOREM 3.1. If £ is regular and Lindeléf then, I,(£') C I5(L).

PROOF. Suppose I (L) ¢ I,(L); that is, there exists a p € I5(L’) but not in I,(L). Let
p(L) = sup u(L'),L' C L,I',L € L which is a premeasure; that is, p € II(£). But since L is regular
then S(i) = S(p). Also, p € I, (L) since p € I4(L'), and since £ is Lindeldf, S(p) # @ then S(u) # 0.
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Let z € §(p), then p < py(2) therefore u € I5(L) this is a contradiction. Thus, I, (L) C I (L).
DEFINITION 3.1. L is slightly normal if for every u¢€ I (2'), there exists a unique
vEIp(L)p<vyl)

THEOREM 3.2. a) If §(L') separates £, then £ is slightly normal; b) Suppose whenever
ANB =0, A, Be L, there exist A, B,, € £ such that A C Ac 0131 B,, C B’ then é(L’') separates &.
n=—

PROOF. Let p€1,(L), u<vi(L), p<wy(L) where v, vy € Ip(L). If v| # vy, there exist
A, B€ L, vi(A)=vy(B)=1 and vy(A) =v(B) =0 then by hypothesis, there exist L}, L), where
Ly Ly € £ for all n, m such that AC NLy, BC NLp and (NLy) N (NLy,)=0. Since vj(A)=1
and p<v|(L), then p(Ly=1) for all n. Similarly, we get u(Li;)=1 for all m. Thus,
w(LpyNLy =1 for all n,m but ﬂ LN Ly, =0 which is a contradiction since u € I,(L'). Thus,
v; S vy and so L is slightly normal c) the proof is clear.
Next, we consider the following condition, designated as (*)

Let A, E€L; AN B = then, there exists AT and B;€ £; A C UlA
A; € L and A} C B, and also B;N B = for all i.

THEOREM 3.3. If £ is § and satisfies () then, £ is normal.
PROOF. Let ANB=0 for A, B€ L then, there exists C;T,C;€ L; B C.ol\j’l C} and there
1=

exists D;€2;C;CD; and D;NA=0 for all i. Let S;=A.ND; and Hj=Cf’-ﬂB'J~ clearly
S HjGI.'. Then, S; ﬂH =0 since S; ﬂH = AN D; ﬂC;ﬂB’ and < j then clearly
A;C A;CBj, while if i>j then clearly C} C CicD; Also, US;= U(A'ﬂD’) D A since
UA’ C A and D; C A for all f. Similarly, UH D B and US UH 61, 1f£ is 6 and so they are
dlS]Olnt as shown. Thus, £ is normal.

THEOREM 3.4. If £ is §, regular and Lindelsf then, £ is normal.

PROOF. Let A, B€ L and ANB=0. Since £ is regular, for z € A there exist L,, L, €L
such that z€ L, C I, and L,NB=0. Since £ is Lindelsf there exists a countable number
L,,:=1,2,--- of the L, such that A C UL}, and we may assume L’ziT. Then, L;’,,iC I:,,i and

1

E,. U B = so condition () is satisfied and so since £ is §, it follows that £ is normal by Theorem
3.3

Next, for u € I(L) and E C X, we define p/(E) = inf u(L') where EC L', L € £. And, we say
that p € I,(2) if p(L')=1,L €L then L'>L e L and w'(L)=1. Also, we note that p = p'(L) if
and only if y € I'p(L).

THEOREM 3.5. If £ is normal then, I, (L) = I p(L).

PROOF. i) If p€ Ip(2) and p(L') =1,L€ L then L' D L e £, u(L) =1 but p < (L) therefore
#(L)=1. Thus, p€I,(L) and so Ip(2) CI,(L); ii) In general, we know that u < p'(£). Now,
suppose L is normal and y € I, (£). Suppose u(L)=0,L € £ then p(L') =1 therefore L' DL e L
and y'(L)=1. By normality LC A, LC B',A,B€e L and A'NB' =0. Since #'(L) =1, therefore
#(B') =1 and hence y'(L) = 0.

One may easily note that the converse of Theorem 3.5 is not true.

THEOREM 3.6. If p € 1,(£')N1,(L) and §(L') separates L then, u € I g(2).

PROOF. Let L€ and p(L))=0 so p(L})=1 then L} D Ly€L with u'(Ly)=1 since
n€Iy(L). Since §(L') separates L, L; C NAy, A, €L,L,C NBy, Byel and (NAY) N
(NBy,)=0 son’nm A N By, =0 (and we may assume |). Therefore, (A, N Bl,) = 0 for n,m big
since p € I,(£') but Ly C By, therefore 1= p'(Ly) < p'(B},) = p(Bjy,) since in general p=p'(L')
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therefore u(Ayp) = 0 for n big but L; C Ay then L] D Ay, and p(A,) = 1. Thus, p € I5(L).
4. LINDELOF LATTICES. This section is divided into two parts.
PART A

DEFINITION 4.1. 2 is an I-lattice if for every 7 € II;(L), there exists a p € IG{(L); 7 < p(L).

THEOREM 4.1. If £ is an I-lattice and replete then, £ is Lindelsf.

PROOF. Let 7 € I1,(£) then there exists a pu € IG(L); # < p(L) since £ is an I-lattice. Since L
is replete S(p) = NL # @ where p(L)=1,L € L. In addition, S(r) C S(u) where S(x) = N L, and
(L) =1, L € & for all z. Thus, S() # @ and so £ is Lindeléf.

THEOREM 4.2. If £ is countably compact then, £ is an I-lattice.

PROOF. Let €Il (L) then there exists a u € Ip(L); 7 < u(L) but since L is countably
compact p € I{(L) = Ip(L) and so L is an I-lattice.

THEOREM 4.3. If £ is disjunctive and Lindel6f then, £ is an I-lattice.

PROOF. Let w€Il (L). Since £ is Lindelsf then S(x)#@. Let z € S(r) since £ is
disjunctive, pz € I p(L) where 7 < pz(2) and p, is o-smooth on £ then € I%(L) and so £ is an I-
lattice.

Next, we consider W,(L) ={W,(L); L € L} where W (L) ={pu € I(L); p(L) =1}.  Note that
Wo(2) forms a base for the closed sets W (L) of I%(L). Also, we may note the following well-
known fact:

1) If L is disjunctive then, I%(L), W4(L) is replete.

THEOREM 4.4. If £ is disjunctive and an I-lattice then, the topological space IG(L), TW ,(L)
is Lindelof.

PROQF. Since & satisfies conditions for an I-lattice so does Wy(L). Also, since L is
disjunctive then, W (L) is replete. Thus, by Theorem 4.1, W (&) is Lindeldf and so is TW ,(L).

THEOREM 4.5. Assume L is disjunctive. If I%(L), TW,(L) is Lindeldf, then £ is an I-lattice.

PROOF. Let peIq(L) and pu¢ Wo(L), L€ L then, p(L')=1 therefore L'D Let and
u(L)=1 therefore peWy(L) and W (L)NW,(L)=9 therefore W(L) is disjunctive. Also,
W (L) is Lindelsf then, by Theorem 4.3, W,(£) is an I-lattice. Thus, £ is an I-lattice.

PARTB

We now consider the following condition, designated as () [For every = € II(L), there exists
av €I (L) m<y(L)] (*%).

DEFINITION 4.2. £ is a prime complete if for p € I,(L), S(g) # 0.

THEOREM 4.6. If £ is prime complete and satisfies () then, £ is Lindelof.

PROOF. If £ satisfies (+*) then, for = € II,(L) there exists a v € I,(L)r <y(L). By prime
completeness of £, S(v) # @ but S(v) C S(r) then S(r) # @ and so £ is Lindelsf.

THEOREM 4.7. If £ is countably compact then, (**) is satisfied.

PROOF. Let m €Il (L) then there exists a v € I(L) C I,(L) since L is countably compact;
7 < y(L) and so (*+) is satisfied.

THEOREM 4.8. If £ is Lindelof then, (**) is satisfied.

PROOF. Let 7€l (L):S(n)#® since L is Lindelof. Let z € S(x) then, there exists a
v=yp, €I,(L) and 7 < p (L) and so (**) is satisfied.

Consider the space I,(£) and the lattice V, (&) where V (L)={V,(L);L€ &} and
V(L) ={u € I,(L); p(L) =1} It is well-known that V,(L) is prime complete (See [1] and V(L) is
a base for the closed sets 7V ,(2) of I,(L).

THEOREM 4.9. £ satisfies (++) if and only if the topological space I;(L), 7V (L) is Lindeldf.

PROOF. i) If I (L), 7V,(4) is Lindelsf then, V(&) is Lindelof and by Theorem 4.8, V,(L)
satisfies (*+) and so does £; ii) Assume that £ satisfies (*) then, V(L) satisfies (+*). Moreover,
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V'5(L) is prime complete.  Thus, by Theorem 4.6, I, (L), V(L) is Lindelof which implies that

1,(L), 7V 4(L) is Lindelsf.
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