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ABSTRACT. Let X be an abstract set and Z a lattice of subsets of X. Some general properties of

Lindel6f, regular as well as normal lattices are investigated for their measure implications and their

relationship to separation properties. Moreover, we show that the generalized Wallman replete

space and the generalized Wallman prime complete space are LindelSf spaces if and only if certain

measure relationships hold on .
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1. INTRODUCTION. In this paper we consider in detail, Lindel6f lattices and their relationship

to separation properties, and also to certain measure properties. In particular, we show that the

generalized Wallman replete space is a Lindel6f space if and only if a certain measure relationship

holds on Z, and, similarly, the generalized Wallman prime complete space is Lindel6f if and only if

another measure relationship holds on Z.
Before doing this, we investigate some general properties of regular, Lindel6f lattices as well as

normal and slightly normal lattices. We are mainly concerned with measure implications of these

properties, and also lattice separation properties that may result.

We adhere to standard lattice and measure terminology and notation (See e.g. [11, [2], [3], and

[7]), and we give some relevant background material in Section 2 for the reader’s convenience.

2. BACKGROUND AND NOTATION. Let X be an abstract set and Z a lattice of subsets of X.
It is assumed that and X E Z, although this is not necessary for some of our results.

MEASURE TERMINOLOGY. We now introduce some measure terminology and results.

1. a(Z) is the algebra generated by .
2. I(Z) is the set of all 0-1 valued finitely additive measures defined on a (Z). Also, we note

that there exists a 1-1 correspondence between t E I(Z) and prime k-filters given by F =( fi Z;
,a(L) }.

3. IR() is the set of all E 1() which are Z-regular; that is, for A E a(Z), u(A)= sup/(L)
where L C A, L fi . Observe that the correspondence given in 2 gives a 1-1 correspondence

between IR() and -ultrafilters.
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4. Ia(Z is the set of all 0-1 a-smooth finitely additive measures on . p E I() is a-smooth if

for Ln E , Ln.LO then lim t(Ln) 0. Also, we note that / e Ia() if and only if the associated

prime 2--filter given in 2 has the countable intersection property (c.i.p.).
5. Ia(Z) is the set of all 0-1 a-smooth finitely additive measures on a (2.). A 0-1 measure It is

a-smooth on a (Z)if for An
._ , An.L, then lim I(An)= O.

6. It is worthwhile noting that if/ fi IR(2.) then/ fi ia(2.) if and only if/ E Ia().
7. I%(2.)is the set of all Z-regular measures of ia(2.).
8. II(2.) is the set of all premeasures on ; i.e., r II()if r" 2-- {0, 1} and r(0)= 0, r is

monotone and r(A)= ’(B)= for A, B fi Z then r(A V B)= 1. Also, it is easy to see that there

exists a 1-1 correspondence between Z filters and premeasures on Z. In addition, if r II(2-) and

LnJ.O, Ln 2- then lim z(Ln) 0 then we write E Ha(Z).
9. For/ I(2-), we define the support of u to be S(/)= V L; L ; /(L) 1 }. Similarly, we

define S(r) for r

10. For x X, we define p.r.(A) if x.A A . measure

11. By/ _< u(), we simply mean g(L) _< u(L) for all L q .
LATTICE TERMINOLOGY. We next present some lattice terminology and results.

1’. () is the lattice of all countable intersections of sets from .
2’. r(2-) is the lattice of arbitrary intersections of sets from 2..

3’. 2.’ is the complementary lattice of 2.; i.e., ’ ={L’; L 2-}, where prime denotes

complement.

4’. 2. is disjunctive if for any x X and L fi ; xL1, there exists an L2 E ; x L and

L1N L2 . Also, we note that is disjunctive if and only if/z IR(2-) for all x fi X.

5’. 2- is regular if for any x fi X and L E ; x.L1, there exist L2, L3 ; x L2,L1 C L3 and

L V L . Also, is regular if and only if/1 -< u2(),1, 2 fi I() implies S(/2) s(g1).
6’. 2- is normal if for any L1, L2 fi Z; L V L2 }, there exist L3, L4 E ; L C L, L2 C L and

L V L . Also, is normal if and only if for any/ e I(Z) there exists a unique u e IR() such

that u _< u().
7’. Let 1 and 2 be two lattices of subsets of X. 1 separates

then, there exist L3,L4 2.1;L1 C L3,L2 C L4 and L3
8’. Z is Lindelhf if V Lz 0 where L E 2. then, for a countable subcollection Lr, 1 2,... of

L,ilLZi= $. Equivalently, is Lindel6f if and only if for each

9’. 2. is countably compact if every countable covering of X by elements of ’ has a finite

subcovering.

10’. is replete if for any/ e I(), S(/)
11’. is a delta lattice (-lattice) if (2-) 2-.

Further related material can be found in [4}, [5], [6] and [8]).
3. ON SEPARATION. This section begins ith the following observations which follows

directly from the definitions.

(1) 2- is Lindelhf if and only if r is Lindelhf; and

(2) if 2. is and Lindelhf then, separates

Now we investigate some implications of lattices properties for the correspondent measures.

THEOREM 3.1. If 2- is regular and Lindelhf then, la(’) C Ia().
PROOF. Suppose I#(’) I#(); that is, there exists a / e I#(Z’) but not in I#(). Let

p(L) sup/(’),,’ C L,’,L e which is a premeasure; that is, p e II(). But since is regular
then S(p) S(p). Also, p e Ha(Z) since/ Ia(’), and since
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Let x 6 S(/), then It </%() therefore It 6 Ia() this is a contradiction. Thus, Ia(Z’) C Ia().
DEFINITION 3.1. is slightly normal if for every / 6 Ia(2-’), there exists a unique

, e R(Z); < ().

THEOREM 3.2. a) If (’) separates 2., then 2. is slightly normal; b) Suppose whenever
A 3 B @, A, B e 2., there exist , Bn e 2. such that A C C Bn C B’ then 6(’) separates 2-.

n=l

PROOF. Let It E Ia(’), It _< Ul(2.), It _< t’2(2.) where Vl, t,2 e IR(2.)" If ’1 # 2, there exist

A, B e , tl(A v2(B 1 and v2(A Vl(B 0 then by hypothesis, there exist L’n,L’m where
Ln, Lm e for all n, m such that A C N L, B C f3 Ln and t3 L) gl (’1Ln) . Since Vl(A
and It < t,l(2.), then It(L 1) for all n. Similarly, we get It(Ln) for all m. Thus,
It(L gl Ln for all n, m but nmL’n N L’m } which is a contradiction since It e Ia(2.’). Thus,
v < v2 and so 2. is slightly normal; c) the proof is clear.

Next, we consider the following condition, designated as (,)

A;,Let A, LE; A gl B then, there exists Ai’ and B
_

2.; A C

A e 2- and A C B and also B f’l B @ for all i.

THEOREM 3.3. If is and satisfies (,) then, 2- is normal.
PROOF. Let Af’IB=} for A, Be2- then, there exists CT Cie;Bc, C and there

"
exists Die 2-;CC D and Dif3A=8 for all i. Let Si=AOD and Hj=CB clearly

s,gje’. Then, Sif’IHj=$ since Sif’lgj=At3D f’ICf’IB and i<j then clearly

ACACBj, while if i>j then clearly CCCCDi. Also, ySi= y(Af’ID;)DA since

U. A C A and D C A for all jr. Similarly, U. gj D B and ,U. Si, ? gj e 2.’ if Z is and so they are

d*isjoint as shown. Thus, 2. is normal.

THEOREM 3.4. If 2. is , regular and Lindelhf then, 2. is normal.
PROOF. Let A, Be2. and AOB=

such that x e L: C ,, and ,f3 B $. Since 2. is Lindelhf there exists a countable number

Lz., 1, 2,.-. of the Lz such that A C U L, and we may assume L’r.$. Then, L’,. C Lr." and

Lz. V B so condition (,) is satisfied and so since is , it follows that is normal by Theorem
3.3’.

Next, for/ e I(Z) and E C X, we define t’(E)= inf/t(L’) where E C L’, L e Z. And, we say
that / e IT(2-)if It(L’)= 1, L e then L’D , e and u’(,)= 1. Also, we note that / =/f(2-) if
and only if It IR(Z).

THEOREM 3.5. If 2. is normal then, IT(2.)= IR()
PROOF. i) If It e IR() and tt(L’)= 1, L e then L’ D e ,/() 1 but/ </’() therefore

/z’(L) 1. Thus, It e IT(2-) and so IR()C IT(Z); ii) In general, we know that / < It’(Z). Now,
suppose 2. is normal and It e IT(2.). Suppose g(L)= 0, L e 2. then It(L’)= 1 therefore L’D [ 5 2.
and p’(,) 1. By normality L C A’, , C B’, A, B e 2. and A’ f’l B’= 1. Since/’(,) 1, therefore
It(B’) 1 and hence/’(L) 0.

One may easily note that the converse of Theorem 3.5 is not true.
THEOREM 3.6. If It e Io.(’)t3Iw() and ti(’) separates 2. then,/t e IR(2-)"
PROOF. Let L e and It(L1)=0 so /(L)= 1 then L :DL2 e 2- with #’(L2)= since

e Iw(). Since ti(2-’) separates 2., L C A’n, An 2., L2 C t3 B’m, Bm e 2. and fl A’n) fl

f’l Bn) $ so An t3 Bn $ (and we may assume ). Therefore, g(A N Bn) 0 for n,m big
I’1 m

since / e Ia(2.’) but L2 C Bn therefore =/t’(L2) </t’(Bn) #(Bn) since in general # #’(’)
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therefore p(A) 0 for n big but L C A then L]D An and p(An) 1. Thus, E IR().
4. LINDELF LATTICES. This section is divided into two parts.

PART A
DEFINITION 4.1. is an/-lattice if for every r Ha(), there exists a # I(); r #().
THEOREM 4.1. If is an/-lattice and replete then, is Lindelhf.

PROOF. Let Ha() then there exists a # e I(); r #() since is an/-lattice. Since

is replete S(#) L # where #(L) 1, L e . In addition, S(r) C S(#) where S() Lz and

r(Lx) 1, Lx for all x. Thus, S(r) $ and so Z is LindelSf.

THEOREM 4.2. If Z is countably compact then, is an/-lattice.

PROOF. Let r Ha(Z) then there exists a # IR(); $ p() but since is countably

compact # 6 I()= IR( and so is an/-lattice.

THEOREM 4.3. If is disjunctive and LindelSf then, is /-lattice.

PROOF. Let r Ha(Z). Since is LindelSf then S(r). Let x S(r) since is

disjunctive, #z IR() where r #() and #z is a-smooth on then I() d so is an I-
lattice.

Next, we consider Wa()={Wa(L); L Z where Wa(L) ={ # I(); #(L) 1). Note that

Wa() forms a be for the closed sets tWo(Z)of I(). Also, we may note the following well-

known fact:

1) If Z is disjunctive then, l(Z), Wa(Z)is replete.
THEOREM 4.4. If is disjunctive and an/-lattice then, the topologicM space I(), rW()

is LindelSf.

PROOF. Since satisfies conditions for /-lattice so ds Wa(). Also, since is

disjunctive then, Wa()is replete. Thus, by Theorem 4.1, Wa(Z)is LindelSf and so is rWa(Z).
THEOREM 4.5. Assume Z is disjunctive. If I(), rWa(Z)is LindelSf, then is /-lattice.

PROOF. Let eI() d W,(L),Le then, g(L’)=I therefore L’DL d

p() therefore p Wa() d Wa()Wa(L)= therefore W()is disjunctive. Also,

Wa() is Lindel6f then, by Theorem 4.3, Wa() is an/-lattice. Thus, is /-lattice.

PART B
We now consider the following condition, designated (**) [For every r Ha(), there exists

e ,(); ()] (**).
DEFINITION 4.2. is a prime complete if for # I(), S(#) .
THEOREM 4.6. If is prime complete d satisfies (**) then, is Lindel6f.

aOOr. t ia (**) rhea, o a() hi o(t) (t). ny pim
completeness of , S(v) # O but S(v) C S(r) then S(r) # 0 and so is LindelOf.

THEOREM 4.7. If is countably compact then, (**) is satisfied.

PROOF. Let Ha( then there exists a v I(L)C Ia() since is countably compact;

S v(L) =d so (**)is satisfied.

THEOREM 4.8. If L is Lindel6f then, (**) is satisfied.

PROOF. Let r Ha(L):S(r) #$ since L is Lindel6f. Let x S(r) then, there exists a

v #t e Ia() and S () and so (**)is satisfied.

Consider the space la() and the lattice Va() where Va()={Va(L);LL) d
Va(L) (# I(); #(L) . It is well-known that Vo(L) is prime complete (S [] d v=() i,

bo ta osdt V.(t)of Io(t).
THEOREM 4.9. satisfies (**)if d only if the topologicM space Ia(), rVa(L)is LindelSf.

PROOF. i) If Ia(), zVa()is LindelSf then, Va(L) is LindelSf d by Threm 4.8, Va(L)
satisfies (**) d so ds ; ii) Assume that satisfies (**) then, Vo(L) satisfies (**). Moreover,
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l’a(/ is prime complete.

lr(), rVtr(2-)is Lindel6f.

Thus, by Theorem 4.6, la(Z), Va(2-) is Lindel6f which implies that
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