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ABSTRACT. In this paper we answer a question of Th. M. Rassias concerning an extension of

validity of his result proved in [3].
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1. INTRODUCTION.
In connection with a problem posed by Ulam (cf. [5]; see also [2]) Th. M. Rassias [3] proved

the following theorem on stability of linear mappings in Banach spaces.

THEOREM 1. (see [3]) Let E and E2 be two (real) Banach spaces and let f: E E2 be a

mapping such that for each fixed xeE the transformation R f(tx) is continuous. Moreover,
assume that there exist e E [0, oo) and pc[O, such that

f( / v)- f()- f()II -< ( p / P) (1.1)

for all z, yeE1. Then there exists a unique linear mapping T: E --, E2 such that

f()- r()II -< p (-)

for all zeE1, where : 2e
2_2p"

As was mentioned by Th. M. Rassias [4], the proof presented in [3] reveals that, in fact, it

works for every p from the interval (- oo, 1) and, therefore, the theorem holds true for all such p’s.
It is also readily seen that the only purpose of assuming that all the transformations of the form
t--, f(tx) are continuous is to guarantee the real homogeneity of the mapping T. Without this

assumption one can show that f is approximated by an additive mapping T which means that T
satisfies the following equation

T(x + y) T(x) + T(y) (1.3)
for all x,yE1. Finally, it should be noticed that the completeness of the space E may be

removed from the assumptions of Theorem 1. However, there is still one non-trivial (as it seems)
question concerning a possible extension of the range of validity of Theorem 1. Namely, one can

ask whether the same result holds true under the hypothesis that p is taken from the interval [1,oo)
(obviously in this case the constant should have been defined in a different manner). Such a
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problem was raised by Th. M. Rassias during the 27th International Symposium on Functional

Equations which was held in Bielsko-Biala, Katowice and Krokow in August 1989. The goal of the

present note is to give a complete solution to this problem.

2. MAIN RESULTS.
First, let us realize why the proof of Theorem in its original form (see [3]) does not work for

p _> 1. The fundamental role in this proof is played by the sequence

{n f(2nx)" ne} (2.1)

which, under the assumptions of Theorem (in fact as long as pc(- cxz, 1)) is convergent for each

fixed xeE1. Then T: E E2 defined by the formula

T(z): =nlim n f(2nx), :reEl (2.2)

is the desired linear mapping approximating f. The argument ensuring the convergence of

sequence (2.1) is no longer valid when p becomes greater or equal to 1, so in order to carry the

proof over to this case, one has to change the argument itself or the definition of the mapping T. It

turns out that, for p > 1, the latter modification of the proof is possible. As a result we obtain the

following extension of Theorem 1:

THEOREM 2. Let E and E2 be two (real) normed linear spaces and assume that E2 is

complete. Let f:E E2 be a mapping for which there exist two constants e E [0,o) and

p E R\{1 } such that

f(x + 9)- f(x)- f(9)11 < e( x p + 9 P) (2.3)

for all z, 9eE1. Then there exists a unique additive mapping T: E E2 such that

f(z)- T(x)II < 6 (2.4)

for all xcE1, where
2 for < 1,

6= 2-2P P

2 for p > 1.
2P-2

Moreover, is for each x q E the transformation R 9 f(tx) is continuous, then the mapping T is

linear.

PROOF. In view of what has been said so far, it remains to consider the case p > 1. The

main innovation in comparison with the case p < 1 consists in defining the mapping T by the

formula

T(x)" =nlim 2nf(#), xcE (2.5)

instead of (2.2). Obviously, one has to verify the convergence of the sequence occurring on the

right-hand side of (2.5).
Putting in place of z and y in inequality (2.3), we obtain

f(x)- 2 f()II < 2 21 Pc x p

for all x E1. Hence for each n and every x El, we have

Xf(x)- 2nf(#)II < f(x)- 2f()II + 2 f()- 2f(2-) + + 2n 11 f(2n 2f(#)I]

<21 P[[xlIP+2.21 Pll[[P+...+2n 1.21 Pll2n_l[[ p

(21 p + 22(1 p) + + 2n(1 p)) z p
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where $ is the sum of the following convergent series:

c 2-(1-P) 2Z 2P_2

Now, fix an zcE and chse arbitrary m,n such that m > n. Then

2mf()- 2"f()[[ 2a 2m -nf(2-n "#)- f()II

2" 2"(1 p)g ,
which becomes arbitrarily smM1 as n . On account of the completeness of the space E2, this

implies that the sequence {2"f()" n} is convergent for each z E1. Thus T is correctly defined

by (2.5). Morver, it satisfies condition (2.4) which results on letting, in (2.6).
FinMly, replacing z by =d by in (2.3) =d then multiplying both sides of the resulting

inequMity by 2n, we get

2nf()- 2nf()- 2nf()II 2n(X P)( + P),

for z,V E E1. Since the right-hand side of this inequality tends to zero as n cx, it becomes

apparent that the mapping T defined by (2.5) is additive.

The proof of the homogeneity of T (under the supplementary assumption that f(tz) is

continuous for each z E El) needs no essential alterations in comparison with the case p < 1. It is

also clear what has to be changed in the proof of the uniqueness of T.
Theorem 2 leaves the case p undecided. This is not a mere coincidence. It turns out

that 1 is the only critical value of p to which Theorem 2 can not be extended. In fact, we shall

show that e > 0 one can find a function f:R R such that

f(x + y)- f(x)- f(Y) < e(lx + Yl) (2.7)

for all x, yeR, but, at the same time, there is no constant 6 [0,cx) and no additive function

T:R R satisfying the condition

If(x)- T(z) < 6lz for all zeR.. (2.8)

This singularity is illustrated by the following:
EXAMPLE. Fix e > 0 and put/: . First we define a function :R R by

for [1,
(x): x for xe 1,1),

Evidently, is continuous d I(z) zR. Therefore, a function f: R is correctly

defined by the formula

f(z): ff(2n)
n:0 2n

Since f is defined by means of a uniformly convergent series of continuous functions, f itself is

continuous. Moreover,
If(z)l < -2, x.

n=0

We are going to show that f satisfies (2.7).
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If x y 0, then (2.7) is trivially fulfilled. Next assume that 0 < ]x[ + [y[ < 1. Then there

exists an Ne such that

ne, 12u-l<, IN-luI<a 12N--(,+U)I--<ZU--(II+IUl)<, wi

implies that for each n {0,1, N -1} the numbers 2nz, 2ny and 2n(z + y) remain in the interval

(- 1,1). Since is linear on this interval, we infer that

(2"( + u)) (2") (2"u) o

for n 0,1, N- 1. As a result, we get

(Ixl + lyl) n=N 2"(Ixl + lYl)
(2n(x + y)) (2"x) (2ny)

Finally, assume that [x[ + ]y[ > 1. Then merely by virtue of the boundedness of f we have

f(x + y)- f(x)- f(r) < 6# e.
Il+lul

Thus we conclude that f satisfies (2.7) for all real x and y.

Now, contrary to what we claim, suppose that there exist a ( [0, oo) and an additive function

T:R --, R such that (2.8) holds true. Hence, from the continuity of f it follows that T is bounded

on some neighbourhood of zero. Then, by a classical result (see e.g. [1], 2.1.1., Theorem 1) there

exists a real constant c such that

Hence,

which implies that

T(x) cx, x

On the other hand, we can choose an Ne[ so large that Np > g + [x[.* Then picking out an z
1from the interval (0, 2N 1)’ we have 2nx (0,1) for each n {0,1 N 1}. Consequently, for

such an x we have
f(x)> (2nx) F2nz
x 2n---- n-=Nu>6+ Ixl,

n=O n=O

which yields a contradiction. Thus the function f provides a good example to the effect that

Theorem 2 fails to hold for p 1.
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