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1. INTRODUCTION.
The well-known Banach fixed point theorem on complete metric spaces (specifically,

each contraction self-map of a complete metric space has a unique fixed point) has been ex-

tended and generalized in different directions. For example, see Edelstein [4,5], Kasahara

[10], Rakotch [15,16] and others. One of its generalizations is for nonexpansive single valued

maps on certain subsets of a Banach space. Indeed, these fixed points are not necessarily

unique. See, for example, Browder [1,2,3] and Kirk [11]. Fixed point theorems for non-

expansive multivalued maps on certain subsets of a Banach space have also been established

by several authors.

Let dH denote the Hausdorff metric on the space of all bounded non-empty subsets

of a metric space (X,d). A multivalued map J: X - 2X (the collection of all nonempty
subsets of X) with bounded subsets as values is called contractive if

dH(J(x), J(y)) _< h d(x,y)

for all x,y in X and for a fixed number h, 0_< h < 1. If the Lipschitz constant h= 1,
then J is called a multivalued nonexpansive mapping. Among many authors, Nadler [13]
and Lami Dozo [12] proved fixed point theorems for these maps under certain conditions.
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2XWe note that an element x X is called a fixed point of a multivalued map J" X if

Husin and Tar’dar [7] introduced the notion of a nonexpansive-type multivMued

map and proved a fixed point theorem on compact intervMs of the real line. A question of

extending this result on certn subsets of a Bmach or Hilbert space ws rised.

In this paper, we deal with this question md prove fixed point theorems for non-

expansive-type and contractive-type multivalued maps (Theorem 2.3, Theorem 3.4). One of

the corollaries (Corollaxy 3.8) of Theorem 3.4 extends a result of Husan and Tardar [7].
Since it follows that each nonexpansive and each contraction map is Mso a non-expansive-

type and contractive-type map respectively, our results include those of Browder [2],
Karlovitz [9] and others, not to mention the fact that the Banach fixed point theorem is a

speciM case of our results. Moreover, Theorem 3.4 contains the following a a speciM case:

Eh single-valued nonexpansive map on a nonempty dosed, convex, bounded subset of a

reflexive Banach space satisfying Opial’s condition has a fixed point. This cm also be

derived from Kirk [11]. Lastly, we prove a common fixed point theorem for a sequence of

multivalued contractive-type maps (Theorem 4.1).
2. FIXED POINTS OF CONTRAGTIVF_,-TYPE MULTIVALUED MAPS

Let M be a nonempty subset of a metric spe (X,d). The first author and Tardar

[?] call a map J- M 2X nonexpmsive (here it is cMled nonexpansive-type to avoid con-

fusion) if for all x M, ux J(x) there exists Vy J(y) for all y M such that

dCUx, Vy) <_ dCx,y)

Clearly, this notion generalizes the usual concept of nonexpansive [3] maps.

the above inequality we have

Further, if in

d(Ux, Vy) <_ h d(x,y)

for some fixed h, 0 _< h < 1, then we call it a contractive-type map. The notion of con-

traction for single-valued maps is clearly coincident with a "contractive-type mapping.

Moreover, each contractive-type mapping is a nonexpansive-type map.

We begin with some examples of nonexpansive-type and contractive-type maps.

EXAMPLES 2.1 (a) Let {fa: a e I} be a family of single-valued contraction

mappings on a non-empty subset M of a metric space (X,d) into X, with the same

Lipschitz constant h ha [i.e. for each a I, fa: M - X and d(fa(x), fa(y)) < h d(x,y) for

all x, y M, 0 <_ h < I]. Then the multivalued mapping J(x) {fa(x): a e I} (x M),

in a contractive-type map of M into 2X, with the Lipschitz constant h. Instead of ha h,
it is enough to assume that 0 <_ ha h, for all a.

(b) Let X 2 with the usual Euclidean metric d. For M {x (Xl, x2) X:
xi>_0, i= 1,2}, define
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Then J is a contractive-type multivalued mapping with h 2" For if ux

I-1 :--2-21 J(x), where n is any positive integer greater than or equal to 2, then for any

y M, put Uy= [, -] J(y). Clearly

(xl-Yl)2 + (x-y2)2] < 1/2 d(x,y).

This inequality is also true for any negative integer n less than or equal to -2.

(c) Let X with the usual metric d and M [0,1]. Consider

then it defines a contractive-type multivalued mapping of M into 2X with h 1/2. More
generally, the multivalued mapping

n+--’f’ (x

1is a contractive-type mapping with h for any positive integer n > 2.

The following example shows that there are nonexpansive-type multivalued maps
which are not contractive-type

EXAMPLE 2.2 Let M X with the usual metric d. Define

J(x) {x-tan-l(x), -tan-l(x)}, (x X).

Then J is a nonexpansive-type multivalued mapping, but not contractive--type For, if

ux x-tan-l(x) J(x), for the derivative u’ 1 1
x 2’ used in the mean value

l+x
theorem, we have

d(Ux, Uy) Inx- Uy <_ Y < [x y[ d(x,y),

where x < ff < y. Clearly Uy
we have

y-tan-l(y) J(y). Similarly, if ux - tan-l(x) J(x),

Note that r/ and

mapping.

d(Ux, Uy) _< 1/2-1 Ix-y[ < d(x,Y)"

both depend on x and y, so J cannot be a contractive-type
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Now we prove a fixed point theorem for contractive-type maps on complete metric

spaces.

THEOREM 2.3 Let M be a nonempty dosed subset of a complete metric space

(X,d) and J" M 2M a multivalued contractive-type mapping with dosed subsets of M
as values. Then there is a point x e M such that x J(x).

PROOF. Let x0 be an arbitrary but fixed element of M and choose an x1 e J(x0)
with d(x0, Xl) > 0. If there is no such Xl, then x0 is already a fixed point of J. Since
J is a contractive-type map, there is a x2 J(Xl) such that

d(Xl, x2) <_ h d(x0,xl) for some fixed h, 0 <_ h < 1.

By induction, using the definition of contractive-type map, we obtain a sequence
such that

{xn}

Xn+1 e J(xn) and d(Xn, Xn+l) _< h d(Xn_l, Xn) (Vn_> 1).

This leads to d(Xn, Xn+l) _< hnd(x0, Xl) and for m > n, we have

hnd(xn, xm) -< yc[[ d(xO, Xl).

Since 0 <_ h < 1, we have d(Xn, Xm) - 0 as m, n --, (R). Thus by the completeness of X,
we find an element p eX with limx =p. Since J(M)= U J(x) CM and x0 eM,

n n xeM
we have xn M for all n. Since the sequence {xn} is in the closed set M, it follows
that p M. Further, xn J(Xn_l) and J being contractive-type implies there is vn
J(p) such that

d(xn, Vn) < h d(Xn_l, p).

But by using the triangle inequality we have

d(p, Vn) _< d(p, xn) + h d(Xn_l, p)

which implies d(p, Vn) - 0 as n (R). As vn
proving that p is a fixed point of J.

and J(p) is dosed, we get p e J(p),

If we take M X in Theorem 2.3, then we have the following:

COROLLARY 2.4 Each multivalued contractive-type mapping J" X - 2X with

dosed subsets of X as values, has a fixed point.

This clearly contains the Banach fixed point theorem as a spedal case. We note that

the dosedness of M in Theorem 2.3 is essential.

EXAMPLE 2.5 (a) Let X with the usual metric d and M \{0}. Define

J(x) ,...,- C M
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for each x M. Then J is a contractive-type mapping of M with J(x) as a dosed

subset of M and h 1/2. J is a fixed-point-free mapping.

(b) Let X and M (0,1]. Then, the contractive-type closed-valued mapping
J defined in Example 2.1 (c) has no fixed point.

3. FIXED POINTS OF NONEXPANSIVE-TYPE MAPS ON CERTAIN CONVEX
SUBSETS OF A BANACH SPACE
In this section, we prove fixed point theorems for nonexpansive-type multiva!ued

maps on certain convex bounded subsets of a Banach space. One of these results extends a

result due to Husain and Tarafdar [7], contains a Browder’s result [2] and generalizes a

Kalovitz’s result [9].
First we observe that not every nonexpansive-type multivalued mapping on a non-

empty closed convex bounded subset M of a Banach space X has a fixed point (cf. [8],
Example 2.1). Other such examples might be of interest.

EXAMPLES 3.1 (a) Let X CO, the Banach space of all complex sequences con-

verging to zero with the sup norm: II{xi}l[ suplxil. Let M denote the closed unit ball

of c0. Note that M is not weakly compact because X is not reflexive. For a fixed integer

nO > 2 and for each integer n <_ no, let fn(x) {I,... ,l,Xl,X2,...}, x {Xn} e I". Then

n-times
each fn is a nonexpansive fixed-point-free mapping of M into itself. The compact-

valued nonexpansive-type mapping

n o

n=l

has no fixed point.

(b) Let X C[0,1], the Banach space of continuous real-valued functions on [0,1],

which is not reflexive. Let

M {re X: f(O) O, f(1) 1, 0 <_ f(x) 5 1}.

M is closed, convex and bounded. The mapping J

x2f( ),

(where f e M and 0 <_ x <_ 1) is easily seen to be nonexpansive-type and has no fixed

point.
These examples show that we need some stronger conditions either on convex closed

and bounded subsets of a Banach space or on the Banach space itself to have a fixed point

theorem. In [8] we proved a fixed point theorem (Theorem 2.2) on weakly compact convex

subsets under an additional condition (condition (*)).
Here we prove an improved fixed point theorem for multivalued nonexpansive-type

maps on a nonempty convex weakly compact subset of a Banach space X under certain

conditions, without (*) condition.
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We use the following notion due to Opial [14].
A Banach space X is said to satisfy Opial’s condition [14] if for each x X

each sequence {Xn} weakly convergent to x,
and

m inf [Ixn yll > m inf IIxn xll
n n

holds for all y # x.

Every Hilbert space satisfies Opial’s condition [14]. Also, if a Banach space X
admits a weakly continuous duality mapping [1], then it satisfies Opial’s condition [6]. The

spaces/P, 1 < p < (R) satisfy Opial’s condition [6]. However, there are Banach spaces which

fail to satisfy Opial’s condition, e.g. LP[0, 2r] (p 2) (see [14]).
If the relation z is uniformly approximatdy symmetric [9] in a reflexive Banach

space X, then X satisfies Opial’s condition (see [9]). In a Hilbert space, and more

generally for the spaces t’p, 1 < p < (R), the relation is uniformly approximately
symmetric. (For further details see [9]).

First, we prove:

PROPOSITION 3.2 Let M be a nonempty dosed bounded convex subset of a

Banach space X. Suppose J: M 2M is a nonexpansive-type compact-valued mapping.
Then there exists a sequence {Xn} in M and un e J(Xn) such that

IIxn -unll -, 0 as n (R).

PROOF. Consider a sequence of positive numbers {hn} converging to 1 and

0<hn< 1 for all n_> 1 (for instance hn=(1-n-1)). For a given point x0 of M we

define the mapping Jn of M into 2M by setting

Jn(X) hnJ(x + (1- hn)X0 {hnU + (1 -hn)X0: u, J(x)}.

The mapping Jn does carry M into 2M, since for each x e M, Jn(x) is the set of
convex linear combinations of the points x0 and u J(x) M and M is convex. Thus
we have Jn(M) g.M. Now we show that for each n >_ 1, Jn is a contractive-type

mapping such that Jn(X) is a dosed subset of M for each x M.
Clea.rly, for each x M, Jm(X) being nonempty, if we let ux e Jm(X) then we get

u m + (- m)O, o sone , ().

Since J is nonexpansive-type there is a vy e J(y) for all y e M such that

IIvx vrll <_ IIx- yll.

Pu.t uy hmVy + (1- hm)x0. Clearly, by definition of Jm(y we get Uy e Jm(y and

Ilux uyli Ilhm(Vx vy)ll <- hmllX
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which proves that Jm is contractive-type. Now we show that

Jm(X) K for fixed x and m. Suppose xk K, k 1,2,...
Since xk Jm(X), we get

Jm(X) is dosed. Put

and xk Y0 l (: M.

xk hmUk + (i- hm)X0, uk J(x).

Using the compactness of J(x), for a convenient subsequence still denoted by {Uk} we

have uk-u eJ(x). Taking the limit as k(R), we get Y0 =hmu + (1-hm)X0. Thus,
by the definition of Jm(X) we have Y0 e Jm(x). This proves that for each n _> 1 and for
each x M, Jn(X) is a dosed set. Theorem 2.3 guarantees that for each n > 1, Jn has

a fixed point in M, say, xn Jn(Xn) M, n 1,2, From the definition of Jn(Xn),
there is a un e J(xn) such that

Thus

xn hnun / (I hn)xO.

Iixn Uni ilhnun + (I hn)x0 Unl (i hn)llx0 Unl[.

Since M is bounded, un e J(xn) C M implies {[[un -x0[[} is bounded and so by
-1 as n-(R), we have IIxnthe fact that hn -Unl]-0 as n-(R).

Proposition 3.3 Let M be a nonempty subset of a Banach space X which satisfies

Opial’s condition and J" M -, 2M a compact-valued nonexpansive-type mapping. Let

{Xn} C M be a sequence which converges weakly to an element x e M and if Yn e xn
J(Xn) such that {yn} converges to y X then y x-J(x).

PROOF. If Yn xn J(Xn) then we can write Yn Xn Un for some un J(Xn).
Since J is a nonexpansive-type map, there is a vn e J(x) such that

Ilun Vnl <_ IlXn xll it follows that

lim ini[xn x[[ _> lim inf][un Vn[ lira inf]]xn Yn Vn[["
n n n

Since every weakly convergent sequence is necessarily bounded, limRs in the preceding ex-

pression are finite. Now, since {Vn} is contained in the compact set J(x), there is a

subsequence of {Vn} also denoted by {Vn} convging to v e J(x). Therefore,

lim inf[]xn Yn vn[[ lira inf[[xn Yn Vn (y + v) + (y +
n n

>_ lim inf[[[xn -(y + v)[[- [[(Yn / Vn)- (y +
n

_> lira infllxn- (y + )11 + lira inf(-Ilyn + vn -y- vii)
rl n

Thus we have shown:

im ilxn (y + v)il.

m infllxn ’11 >- li m inf[[xn (y / v)II.
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Since xn x weakly, using the Opial’s condition we have x y+v, so y x-v x-J(x)
and the proposition is proved.

Using Prepositions 3.2 and 3.3, we derive:

TKEOtI.EM 3.5 Let M be a nonempty weakly compact convex subset of a Banach

space X which satisfies Opial’s condition. Then each nonexpansive-type, compact-valued

map J: M 2M has a fixed point.

PROOF. Clearly M is a closed convex and bounded subset of X. By Proposition

3.2 there exists a sequence {Xn} in M such that

un e J(Xn)

M being weakly compact, we can find a weakly convergent subsequence {Xm} of {Xn}. Let
x0 w m xm. Clearly x0 M and as above we have Ym Xm Um (urn J(Xm))"

m
Then it follows that Ym - 0 and so by Proposition 3.3 there exists a fixed point x0 J(x0).

The following corollaries follow from Theorem 3.4 in view of the remarks given after
the definition of Opial’s condition.

COROLLARY 3.5 Let M be a nonempty weakly compact convex subset of a

Banach space X having a weakly continuous duality mapping. Then each nonexpansive-

type, compact-valued mapping J of M into 2M has a fixed point.

COROLLARY 3.{ Let M be a nonempty cloed bounded convex subset of a reflexive

Banach space (in particular, uniformly convex space) X which satisfies Opial’s condition.

Then each nonexpansive-type, compact-valued mapping J of M into 2M has a fixed point.

COROLLARY 3.7 Let M be a nonempty closed convex bounded subset of a reflexive

Banach space X. Suppose the relation is uniformly approximately symmetric, then

each nonexpansive-type, compact-valued mapping J of M into 2M has a fixed point.

COROLLARY 3.8 Let M be a nonempty dosed convex bounded subset of a Hilbert

space X. Then each nonexpansive-type, compact-valued mapping 3 of M into 2M has a

fixed point.

REMARK 3.9 Corollary 3.8 exten& a result due to Husain and Tarafdar [7] and

contains a result due to Browder [2] as a special case. Corollary 3.7 generalizes Karlovitz’s

result [9]. An alternative proof of Theorem 3.4 can be obtained via the result known for non-

expansive maps [12], since dosed bounded valued nonexpansive-type maps are non-

expansive. In other words, we obtain a different proof of Theorem 3.2 [12].
Now we give an example which shows that Theorem 3.4 is not true if the Lipschitz

constant is greater than 1.

EXAMPLE 3.10 Let X =/2, the space of all infinite sequences x {xi}i> 1 which

are absolutely square-summable with the t2-norm:

Let M {x e X:llx]l i 1}, which is obviously a dosed bounded and convex subset of the

reflexive Banach space /2 and so weakly compact. For a real number A > 1, we set
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J(x) {h(l- [[x[[)e + si(x)" i= 1,2,...,n}

for all x M, where h < 1, 0 < h _< (A2- 1) 1/2 e {ij}j_>l and si(x
{Xl,X2,...,Xi_l,0,xi,0,0,... } with 0 in the th position.

We see that J is a compact-valued map of M into 2M. Moreover J is a non-

expansive-type mapping with the Lipschitz constant A > 1. For, if ux h(1 -Ilxll)ek +
Sk(X) J(x) for some k, we put Uy h(1- Ilyll)ek + sk(Y). Clearly Uye J(y) and

i[Ux Uy[[2 [[{Xl Yl’ x2 Y2’""xk-i Yk-l’ h(llYll -llx]])’ Xk Yk’’’’}]]2

j=l

<_ I[x-yll 2 + h211y-xll2

implying [[ux -Uy[[ <_ ’1’+ ’h2 [Ix- y[[ < Allx- y[].

It is easy to see that J is a fixed-point-free mapping.

4. COMMON FIXED POINTS
There are many interesting common fixed point theorems for a commuting family of

maps, e.g. see [3]. Here we prove a common fixed point theorem for a sequence of multi-

valued contractive-type maps, from which we can derive Theorem 2.3.

THEOREM 4.1 Let M be a nonempty closed subset of a complete metric space

(X,d) and {Jn} a sequence of dosed-valued maps of M into 2M. Suppose that there

exists a constant h with 0 <_ h < 1 such that (*): for any two maps Ji’ Jj and for any

xeM, uxeJi(x) implies there isa uyeJj(y) for all y in M with

d(Ux, Uy) <_ h d(x,y).

Then {Jn} has a common fixed point.

PROOF. Let x0 be an arbitrary element of M

there is x2 e J2(xl) such that

and choose xI Jl(X0). Then

d(Xl, x2) <_ h d(x0,xl).

We proceed as in the proof of Theorem 2.3, to show that there is an Xn+1 e Jn+l(Xn)
such that

d(xn, Xn+1) -< hnd(x0 Xl), (V n >_ .).

Clearly {Xn} is a Cauchy sequence in a complete metr/c space X, and so p lira xn e M.
n

We show that p is a common fixed point of the sequence {Jn}.
Let Jm be an arbitrary member of {Jn}. Since xn Jn(Xn_1) there is a un Jm(p)

such that
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d(xn, un) <_ h d(Xn_l, p).

But then by the triangle inequality (using the last inequality) we have

d(p, Un) _< d(p, Xn) + h d (Xn_I, p)

which implies d(p, Un) 0 as n (R). Since un e Jm(p) and Jm(p) is dosed, we get
p Jm(p). But then Jm being arbitrary, we conclude that p e f Jm(p).

m)l

REMARKS. If we take Jj J1 for all >_ 1 in Theorem 4.1, then again we obtain
Theorem 2.3. Further, any pair of contraction maps having the same Lipschitz constant
and satisfying (*) have a common fixed point.
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