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ABSTRACT. Let P[A,B],-1 :B <A 1, be the class of functionsp such that p(z) is subordinate to

/_ Let P(at) be the class of functions with positive real part greater than a, 0 al < 1. It is clear that
+Bz

I-AP[A,B]CP(_B CP[1,-1]. The principal results in this paper are the determination of the radius of
1-A

-starlikeness and -convexity of f(z) with -_--, when f(z) is restricted to certain classes of univalent

and analytic functions related vith P[A,B ].
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1. INTRODUCTION.

Let f be analytic in E {z "] z[ < 1}, and be given by

f(z)-z + , a,,z". (1.1)

A function g, analytic in E, is called subordinate to a function G if there exi.sts a Schwarz function w(z),

w(z) analytic in E with w(0) 0 and w(z)l < 1 in E, such that g(z) G(w(z)).
In [1], Janowski introduced the class P[A,b]. ForA and B,-1 <B <A 1, a function p, analytic in

I+AE with p(0) 1 belongs to the class P[A,B ifp(z) is subordinate to --;-,.
Also C[A,B and S*[A,B denote the classes of functions, analytic in E and given by (1.1) such that

(#’(z)y z/"(z)a,-.-S-.P[A,B] and-.P[A,B] respectively. For A- 1, and B--1, we note that C[1,-1]= C and

S*[1,-1] S*, the classes of convex and starlike functions in e. Also S*[A,B C. S*(-a) (2 S*[1,-1] and

CtA,  cc( ) ct ,-l where S*() and C(-) denote the classes of starlike and convex
1-A

functions of order respectively. These classes were first introduced by Robertson in [2].

A function f, analytic in E and given by (1.1), is said to be in the class R,[A,B ], -1 B <A 1, if

and only if
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Hence
(zf’(z))’ 1-A .zp’(z) 1-A

f’Cz) 1-e
p(z) + - 1-B

Using Lemma 2.3 for a I, we have for RI

Re[ (Zf’(z))’ l-a] 1-(3A -B)r +A2r
f’(z) 1-B

:,
(1-Ar)(1-Br)

A-B 1-(2 +A -B)r +Ar
-B (1 -Ar)(1 -Br)

and this implies that Re[ t4’t)r -t

-,t) i-8 0 for Iz] < r0, where ro is given by (3.1). The inequality RI <R_, is

satisfied whenever T(r)- 1-(2 +A -B)r +Ar2>O. But T(0)- >0 and T(1)-B <0. So T(r) has

at least one root in (0,1). Let ro, given by (3.1) be that root of T(r) O. Then in [0,ro),Rl <Rz and hence

fEC( 1-Ai’) for all z with zl r ro < 1.

This result is sharp for the function f0 e S*[A,B such that

zfo’(Z) +Az
o(z) +Bz

z/’(z) -ATHEOREM 3.Z. Let g e. S*[A,B and let e P[A,B ]. Then f e C(_---) for zl < ro, where ro is

given by (3.1).
PROOF. zf’(z) g(z)p(z), pe P[A,B ].

This gives us

(z/’(z))’
/’(z)

Applying the usual inequalities, we obtain

Re[(Zf’(z))’ x-a]f’(z) 1-B

zg’(z) zp’(z)
+

g(z) (z)

-Ar (A -B)r 1 -A
1-Br (1-Ar)(1-Br) 1-B

(,4 -B)[1-(2 +a -B)r +Ar]
(1 -B)(1 -Ar) (1 -Br)

1-AHence we obtain the required result that f e C(_-) for Izl < ro and ro is given by (3.1).

1-ATHEOREM 3.3. Let g e S*[A,B and P[A,B ]. Then e ro, where ro is

given by (3.1).
PROOF. We have zf’(z) g(z)p(z), p P[A,B and so

Thus

(zf’(z))’ .p(z) +
g(z)

zp’(z)
g’(z) zg’(z)

Re[ (zf’(z))’
g’(z) 1-B

Re p(z)
(1 -Br) (A-B)r 1-A
(1-Ar) (1-Ar)(1-Br)]-i-B

(1 -Ar)
(1 -Br)

1-(3A-B)r +A2r
(1 -Ar) (1 -Br)

(A -B)
(1 -B)

1 -(2 +A -B)r +Ar
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(S,(z))
f(z)- ___, $,,SeS*[A,B].

(S(z))"
(1.2)

Clearly k a 2 andR2[A,B S*[A ,B ]. AlsoRk[1,-1] U,, the class of functions with bounded radius

rotation discussed in [3].
Similarly we can define the class V,[A,B as follows. A function f, analytic in E and given by (1.1)

belongs to V[A ,B ], k :,. 2, if and only if

[/_
(S,Cz )lzy

f’(z)- ___, S,,S2eS*[A,B (1.3)
(S(z )/z )"

From (1.2) and (1.3), it is clear that

f e Vk[A,B if and only if zf’ e Rk[A,B (1.4)

It may be noted that V2[A,B C[A,B and V,[1,-1] V,, the class of functions of bounded rotation

first discussed by Paatero [4].
2. PRELIMINARY RESULTS

LEMMA 2.1 [5] Let p e P[A,B]. Then

1-Ar 1 +Ar
-BRe P(Z)lP(z)l +Br

The following is the extension of Libera’s result [6].
LEMMA 2.2. Let N and D be analytic in E, D map onto a many-sheeted starlike region.

V’(z N(zN(0) 0 D(0) and e P[A,B ]. Then D-z) e P[A,B ]. For the proof of this result we refer to [5].

LEMMA 2.3. [7] Let p e P[A,B ]. Then, for z e E, a 0 and a 0, we have

where

and

This result is sharp.

3. MAIN RESULTS.

zp’(z)Re{ aP(Z) + fi p(z) }
ct-{A-B) + 2aA}r + ctAUr

(I -Ar)(1 -Br)

15
A +B 2[(L1KI)v2 13(1 -ABR2)]
A -B +

(A -B)(1 -r2)

R:
1-Ar
i -Br’ LI 1 -A)(1 +/r)

KI ct(A -B )(1- rU) + I3(1-B )(1 +Br2).

I-ATHEOREM 3.1. Let f S*[A,B ]. Then f e C(_--) for

R -:R

This result is sharp.

[Z[ <r
(2 +A -B) +V’(2 +A -B)2- 4A

(3.1)

PROOF. We have zf’(z) f(z)p(z), p e P[A ,B
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I-A.r p() fo Izl < is given by (3.1).Hence e ro, where r

Our next result is about the radius of convexity problem for the class Vk[A,B ].
I-ATHEOREM 3.4. Let f e V,[A,B ], k 2. Then f e C(_--) for zl < rl, where

r
k(1-B) + VCk2(1 -B) + 16/3

PROOF. Since f e V,[A ,B ], we have from (1.3)

This implies that

SO

(s#)/z)/
f’(z) .__,_, S,S S*[A,n

(S#)/z )"

(zf’(z))’ (k 1)(k 1)f’(z) - +’ Pt(Z)- --’ Pc(z)" pl,p2 e P[A,B]

Re[ (zf’(z))’if(z 1-B "+ 1-Br "- +B" --B
(A -B)-(1 -B)(A -B)r -B(A -B)r

(1 -B)(1 -Br)
I-AHence f e C(_--) for Izl < r,, r, is given by (3.2).

(3.2)

From Theorem 3.4 and relation (1.4) we have the following:
-,/l-A\THEOREM 3.5. Let f e R[A,B ]. Then f e 5 () for zl < rt where rt is given by (3.2).

THEOREM 3.6. Let a and m be any positive integers andf e Rk[A,B ]. Then the function F defined

by

(F(z))" az,,+ m. i t"-l(f(t))dt (3.3)

1-A
belongs toS*(i-) for Izl < r, r is given by (3.2).

PROOF. LetJ(z) / t"-t(F(t))"dt and so

and

or

((z))".
a m. j(z)

o2F’(z) zJ’(z)
F(z) J(z)

zF’(z)
F(z)

1 zJ’(z)-mJ(z) N(z)
ct J(z) D(z)

N(0)-- 0-D(0)
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By a result of Bernardi [8] and Theorem 3.5,D(z) is a (m + ct- 1)-valent starlike function for [z[ < rl. Also

N’(z)- 1 { (zJ’(z))’-mJ’(z)}D’(z) ct r’(z)

z[’(z)

Now, by Theorem 3.5, f e S*( -A -A_--) for zl < r, d thi implies that ,v.t,, e p(r-z) for zl < rt. Hence

D(z)N(z) e P(1-A)I-B for [zl<r,, see t8].

This proves our result.

Similarly, we can prove the following:

THEOREM 3.7. Let a and m be positive integers and f V[A,B ]. Let Fbe defined by (3.3). Then

f e C(--’s) for Izl < rl where r is given by (3.2).
We now prove:

THEOREM 3.8. Letfand g R[A,B and, for m positive integers, let F be defined as

I-AThen F S*(y)forlzl <to

(F(z))
(m + ct) i t" l(f(t))adt (3.4)
(g(z))"

where r0 min(r, r2), r is given by (3.2) and r is the least positive root of the equation

{(1-B)-a(1-A)-{(A-B(1 + 2m)}r +{(A-B)+2m(A-B)+cg,l-A)}r2-O,

PROOF. LetJl(z)- ’/--" / t’-l(f(t))dt.zm

Then (F(z))"-(f-G)’Jt(z), where by Theorem 3.6,Jr eS*(_-_-)forlzl <r.

(3.5)

So

Thus

F(z"-- J(z’- +m g(z)

Re
F(z) 1-B > l + l,,_B r /(l+r) + --(B-A)r /(1-R)

"{ {(I-B-a+aA)+[(B-A)(I+2m)]r+[(A-B)+2m(A-B)+a(1-A)]r}}a(X-B)(1 -r)
zF’(z) -A

i impi, Re- or Izl < r, where r i th, ,at poitiv, root o 3.5). H,n,::,

[z[ < r0, where r min(r1, r2).

Similarly, we have the following:

TItEOREM 3.9. Let fand g e V[A,B and, for it, m positive integers, let F be defined by (3.4).
I-AThen F e C(_---) for [z[ <ro, where ro is as given in Theorem 3.8.

" P[A,B] and let F be defined byTHEOREM 3.10. Let g e V[A,B and e
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F(z) re+l/ t’-lf(t)dt,

where m is any positive integer. Then there exists a function G such that

G’(z)
e P

1-B
G e C

1-B

for zl < r,, where rl is given by (3.2).

PROOF. Let

G(z)
m+l [ t’-lg(t)dt.

Then, by Theorem 3.7 with ct 1 G e C( Z-A_--) for zl < rt and rt is defined by (3.2). Now

z’f(z)-m([t’-lf(t)dt
z’q(z)-m( [ t’-’g(t)dt)

Also

t’f’(t)dt
N(z)
O(z)

N’(z) f’(z)
D’(z) g’(z)

eP[A,B] for zl <rl

1-Atq, eP[A,B] CP(-s) for Izl < r, and this proves our result.Thus, by Lemma 2.2, we have -i7
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