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ABSTRACT. Some theorems on radial segments is studied for ring domains bounded by k-circles.
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INTRODUCTION.
We designate the chordal distance between the points w and w2 in the extended complex w-

plane C by q(wl, w2) that is

q(Wl, W2) Wl w2 [/J(1 + [w112)(1 + w2[ 2)
if w and w2 are both finite, and

q(wl, oo II1 + I,12.
We define the chordal cross ratio of quadruples Wl, w2, w3w4 in C by

(1.1)

(1.2)

X(w1, w2, w3, w4)
q(wl’ w2)q(w3, w4)
q(wl w3)q(w2, w4

(1.3)

A Jordan curve 7 in C is called a k-circle, where 0 < k < 1, if for all ordered quadruples of

points on 7,

X(Wl,W2,W3,W4) + X(w2,w3,w4,wl) _< l/kl (1.4)

This definition of a k-circle was introduced by Blevins [1]. It is well-known that a k-circle is a

quasicircle (see [2]). One of the simplest k-circle is {w: arg w arcsin k}. Throughout the note,
the value of arcsin is restected between 0 and r/2.

We consider a class of C(k)of conformal mappings w=f(z) on an annulus

A(R) {1 <[z [< R} whose images D(7)= f(A(R)) are ring domains 7 with inner boundary

f(Iz 1): {]w 1} and outer ones k-circles % Let w and w2 be the points on such that
w rlei and w2 r2e

i(O + ) with 0 _< 0 < r. In this note we will consider the problem when the

minimum of the values rlr2 and 1/r + 1/r2 are attained. Corresponding to our problem, recently
analogous ones were discussed for the classes of conformal functions by Aharanov and Kirwan [3],
and Blevins [4]. They considered the classes of functions conformal in the unit disk but we will do

in an annulus, using a simple and elementary method, while their methods are rather complicated.

In order to solve our problem the technique of circular symmetrization will be used.

2. LEMMAS. In this section we summarize the pertinent facts in the following lemmas 2.1-2.5

which are necessary to prove covering theorems in section 3.
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LEMMA 2.115]. If D is a ring domain and D* is the circular symmetrization of D with respect

to the positive real axis, then

Mod D < Mod D* (2.1)

and equality holds if and only if D* is obtained from D by a simple rotation around the origin.

LEMMA 2.2[6, p. 34]. Let D be a ring domain whose boundary components have spherical

diameters > d and a mutual spherical distance < . Then for < (, we have

Mod D <_ r2/log(tan (/2)/tan (/2)). (2.2)

LEMMA 2.3[6, p. 36]. Let {Bn} be a sequence of ring domains bounded by a finite number of

analytic curves such that Bn C Bn + and Bn converges to a ring domain B in the sense of FrechSt,
then we have

lim Mod Bn Mod B. (2.3)

LEMMA 2.4[4]. Let D be a ring domain with inner boundary {Iw 1} and outer one 3’ a k-

circle. If 3’ contains the point at infinity and a point w’ with w’l a, then the circular

symmetrization D* of D with respect to the positive real axis is contained in the domain

D(k,a) {w: arg (w + a) < r- arcsin k} f3 {I w > 1}. (2.4)

Now we prove the following lemma which plays important roles in section 3.

LEMMA 2.5. Let w f(z) be a function C(k) and 3" f(Iz I= R) contain the point at

infinity. Then for the distance d(3’,0) between the origin and % there holds the inequality

d(3’,0) _> a0, (2.5)

where a0 is a positive constant uniquely determined from the relation Mod D(k, ao)= log R for

fixed values R and k. The equality (2.5) holds if and only if D(3’) is D(k, ao) except for a simple

rotation around the origin.

PROOF. At first we will verify that the equation

Mod D(k,a) log R (2.6)

has a unique solution a aO. Mod D(k,a) is a strictly increasing function of a variable a. Since

lima-.,ooMod D(k,a)= cx and from Lemma 2.2 lima ooMod D(k,a)= 0, there exist a and a2
such that a < a2 and

Mod D(k, a1) < log R < Mod D(k, a2). (2.7)

Continuity of the module holds for the sequence of ring domains bounded by a finite number of

analytic curves from Lemma 2.3. Therefore the equation (2.6) has a unique solution a a0 for

fixed values k and R.
Let w’ be a point on 3’ such that w’l =d(3’,0)(=a). We consider the circular

symmetrization D*(3’) of D(3’) with respect to the positive real axis. Using Lemma 2.1, 2.4 and

monotonicity of the module, we have the inequalities

Mod D(3")< Mod D*(3")< Mod D(k,a) with Mod D(k, a0)= log R (2.85b)

where equality

Mod 0(3’)= Mod D(k,a) (2.9)

holds if and only if D(3’) is obtained from D(k,a) by a simple rotation around the origin. From the

relation

Mod D(3’)= Mod D(k, ao) log R), (2.10)
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Mo D() <_ Moa D(,.) (2.)

and monotonicity of the module, we have

a _> a0 (2.12)

which implies the desired inequality (2.5). Using Lemma 2.1 we conclude that equality in (2.5)
holds if and only if D() is D(k, ao) except for a simple rotation around the origin.
3. COVERING OF RADIAL SEGMENTS.

In this section we will prove the following covering theorems on radial segments.
THEOREM 3.1. Let w= f(z) be a function in C(k), and w and w2 be the points on

7 f( z R) such that w rleiO, w2 r2ei(# + r) with 0 < 0 < -. Then we have

rlr2 _> (a0 +a- 1)2.

The equality holds if and only if f(A(R))is the image of D(k, ao) under the mapping

(3.1)

’(w) (1 + (a0 -al 1 )w)l(w + a0 --Na (3.2)

except a simple rotation around the origin.
PROOF. At first we estimate min0 < 0 < r(rl + r2) and then we apply the result to proving

the inequality (3.1). Without of generality we can assume (considering a rotation if necessary)

min r(rl + r2) b + bt (t > 1, b > 1) (3.3)
0<0<

and b, -bt 7. We consider a M6bius transformation

C(w) (1 + fbw)/(w + fb) (3.4)

which maps f(A(R)) onto a ring domain D(7’) whose boundary consists of inner boundary

CI- 1} nd outer one ’. Since the chordal cross ratio is invaxiant under M6bius

transformations, 7’ is a k-circle. By the mapping (3.4), b and -bt axe transformed onto

(1 + tb2)/(b + fb) and the point at infinity, respectively.

Using Lemma 2.5 we have

(1 + fb2)/(b + bt) > a0 (3.5)

which implies

b>ao(l+t)/2t+(1/2t}a(l+t)2-4t or b<ao(f+l)/2t-(1/2t)a(l+t)2-4t. (3.6ab)

When 7 contains the point at infinity, the inequality (3.6b) never holds, because a0 < b follows from

Lemma 2.5 and a0(1 + t)/2t-(1/2t)a(1 + t)2- 4t < a0. Thus we have

b+M (1 + t)b > ao(1 + 02/2t +((1 + t)/2)a(1 + t)2- 4t

(3.7)
%(1 + t)2/2t + ((1 + t)/-,a(1 + t)2/gt- 1 2(% + ,a 1 ).

Now we consider the case when 7 does not contain the point at infinity. Without loss of

generality we can assume a d(7,0)E 7. For a point -d(< 0) on 7, a M6bius transformation

(w) (1 +dw)/(w+d)maps the points a and -d onto (1 +ad)/(a +d)( < a) and the point at

infinity, respectively. This means that the minimum of d(7, 0) in C(k) is attained (if and) only if 7
contains the point at infinity. Therefore the inequality (3.7) never holds even when 7 does not

contain the point at infinity. Now we consider another M6bius transformation

C(w) (Wl/@l) (1 @lW)/(w Wl). (3.8)

By this transformation (3.8) D(7) is mapped onto a domain D(7’) whose boundary consists of inner

boundary {ICI 1} and outer 7’ a k-circle. Using Lemma 2.5 we have
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which implies, substituting w rl eiO and w2 r2ei(O + r),
( + q)/(q +) > a0,

and then

rlr2 >_ aO (rl+r2)-l.
Combining the relation (3.7) and (3.11) we have

rlr2 > 2a0(a0 + qao2 1)- (a0 + a02 )2.

(3.9)

(3.11)

(3.12)

If f(A(R)) is the image of D(k, ao) under the mapping (3.2), the equality in (3.1) holds for

wl=a0+a-I and w2= -a0-a-l. On the other hand, considering the case when the

equalities hold, we can easily conclude that the equality in (3.1) holds only if f(A(R)) is the image

of D(k, ao) under the mapping (3.2) except a simple rotation around the origin.
As the application of Theorem 3.1 we have the following theorem.

THEOREM 3.2. Under the assumption as described in Theorem 3.1, we have

1/r + 1/r2 <_ 2/(a0 +. 1). (3.13)

The equality holds if and only if F(A(R)) is the image of D(k, ao) under the mapping (3.2) except a

simple rotation around the origin.

PROOF. We use the inequality (3.10) obtained in proof of Theorem i we have

/(+) > 0- /( + ), (.4)

and then using the inequality (3.7) we have

la/ + a/,>- > ,0 x/II.0 + ,0 I> 1,0 +,-] >/- I.>
This implies the desired inequality (3.13). We omit to estimate the case when the equality in

(3.13) holds, because the proof is similar to one in Theorem 3.1.
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